\$EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION

01 STATE 02 SITE NUMBER

V A 124

PART 3 - DESCRIPTION OF HA	AZARDOUS CONDITIONS AND INCIDE	NTS VA 1 1	24
II. HAZARDOUS CONDITIONS AND INCIDENTS	(10103		
01 CXA GROUNDWATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: unknown Immediate vicinity obtains water from contaminate Patuxent Aquifer which su monitoring wells collected by FIT III of	unaffected public source. The applies water east of site.	Analysis of wate	
01 D B. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED:	02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	☐ POTENTIAL	□ ALLEGED
None known			
01 □ C. CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED:	02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	☐ POTENTIAL	□ ALLEGED
None known			
01 LXD. FIRE/EXPLOSIVE CONDITIONS 03 POPULATION POTENTIALLY AFFECTED: <u>unknown</u> Methane gas venting trench installed to		X POTENTIAL arby residences	□ ALLEGED
01 □ E. DIRECT CONTACT 03 POPULATION POTENTIALLY AFFECTED: None known or expected	02 © OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	□ POTENTIAL	☐ ALLEGED
01 CXF. CONTAMINATION OF SOIL 03 AREA POTENTIALLY AFFECTED: 130 (Acres) Potential exists as site is not lined.	02 □ OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	X POTENTIAL	□ ALLEGED
01 □ G. DRINKING WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: N/A N/A for immediate vicinity population	02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION - Patuxent Aquifer supplies v	□ POTENTIAL water for easte	□ ALLEGED rn Virginia.
01 H. WORKER EXPOSURE/INJURY 03 WORKERS POTENTIALLY AFFECTED: None known	02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	□ POTENTIAL	□ ALLEGED
01 I. POPULATION EXPOSURE/INJURY	02 □ OBSERVED (DATE:)	□ POTENTIAL	D ALLEGED
03 POPULATION POTENTIALLY AFFECTED: None known	04 NARRATIVE DESCRIPTION	L POTENTIAL	L ALLEGED
TOTO RIOWII			

POTENTIAL HAZARDOUS WASTE SITE

I. IDENTIFICATION

01 STATE 02 SITE NUMBER

	1			
D1 D J. DAMAGE TO FLORA D4 NARRATIVE DESCRIPTION	02 OBSERVED (DATE:)	□ POTENTIAL	□ ALLEGED
N/A				
11 K. DAMAGE TO FAUNA 14 NARRATIVE DESCRIPTION (Include name(s) of species)	02 OBSERVED (DATE:)	□ POTENTIAL	□ ALLEGED
N/A				
11 □ L. CONTAMINATION OF FOOD CHAIN 4 NARRATIVE DESCRIPTION	02 OBSERVED (DATE:)	□ POTENTIAL	□ ALLEGED
N/A				
D1 M. UNSTABLE CONTAINMENT OF WASTES (Spits: Runoff Standing liquids, Leaking drums)	02 OBSERVED (DATE:)	□ POTENTIAL	□ ALLEGED
3 POPULATION POTENTIALLY AFFECTED:	04 NARRATIVE DESCRIPTION			
N/A				
11 D. N. DAMAGE TO OFFSITE PROPERTY 4 NARRATIVE DESCRIPTION	02 G OBSERVED (DATE:)	□ POTENTIAL	□ ALLEGED
None known				
01 □ O. CONTAMINATION OF SEWERS, STORM DRAINS, WW 14 NARRATIVE DESCRIPTION	VTPs 02 - OBSERVED (DATE:)	☐ POTENTIAL	□ ALLEGED
None known				
11 [XP. ILLEGAL/UNAUTHORIZED DUMPING 14 NARRATIVE DESCRIPTION	02 🗆 OBSERVED (DATE:)	☐ POTENTIAL	X ALLEGED
The city of Richmond believes, thr dumped at the site.	ough heresay, that some haz	ardous	s waste may	have been
5 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR	ALLEGED HAZARDS			
None known				
I. TOTAL POPULATION POTENTIALLY AFFECTED:				
/. COMMENTS				
None				
. SOURCES OF INFORMATION (Cité specific references, e.g., stat	e files: sample analysis, reports;			

	POTENTI	AL HATAI	BDOII	S WASTE SITE		L IDENTIFICATION
⊕EPA		SITE INS	PECT			01 STATE 02 SITE NUMBER VA 124
II. PERMIT INFORMATION						
01 TYPE OF PERMIT ISSUED (Check all that apply)	02 PERMIT NUMBER	03 DATE	SSUED	04 EXPIRATION DATE	05 COMMENTS	
□ A. NPDES					_	
□ B. UIC						
C. AIR						
D. RCRA						
□ E. RCRA INTERIM STATUS						
☐ F. SPCC PLAN						
XG. STATE (Specify) Management	No. 290	9/16	/82	open	valid unit	l revoked or
☐ H. LOCAL (Specify)	10. 270	1,10	,	1 1/10.11		s are terminated:
☐ I. OTHER (Specify)						s ceased in Sept. 198
□ J. NONE						o o o o o o o o o o o o o o o o o o o
III. SITE DESCRIPTION		<u> </u>		<u> </u>	<u> </u>	
01 STORAGE/DISPOSAL (Check all that apply) 0:	2 AMOUNT 03 UNIT	OF MEASURE	04 TF	REATMENT (Check all that a	pply)	05 OTHER
☐ A. SURFACE IMPOUNDMENT				INCENERATION		
□ B. PILES			1	UNDERGROUND INJ	ECTION	X A. BUILDINGS ON SITE
□ C. DRUMS, ABOVE GROUND			□ C.	CHEMICAL/PHYSICA	AL.	
D. TANK, ABOVE GROUND			□ D .	BIOLOGICAL		1
E. TANK, BELOW GROUND	intro		· ·			06 AREA OF SITE
X F. LANDFILL	unknown		☐ F. SOLVENT RECOVERY			122
☐ G. LANDFARM			□ G .	OTHER RECYCLING	RECOVERY	130 (Acres)
☐ H. OPEN DUMP	 		□ H.	OTHER	- M.)	
I. OTHER				labi	ecify)	
07 COMMENTS						
None						
IV. CONTAINMENT						
D1 CONTAINMENT OF WASTES (Check one)	PT	5.			~ - ···	
☐ A. ADEQUATE, SECURE	X B. MODERATE	□ C. If	NADEQI	JATE, POOR	□ D. INSECU	RE, UNSOUND, DANGEROUS
02 DESCRIPTION OF DRUMS, DIKING, LINERS, BA Leachate collection syste		n. Cove	r mai	terial applied	to active	portion of landfill.
V. ACCESSIBILITY						
01 WASTE EASILY ACCESSIBLE: YES 02 COMMENTS	X NO					
Site is fenced.						
VI. SOURCES OF INFORMATION (Cite spec	ific references, e.g. state files, sa	mple analysis, repi	orts)			
NUS - Preliminary Asses R. Stuart Royer and Asso dated 10/21/81			city	of Richmond'	s Departm	ent of Public Works

_	

POTENTIAL HAZARDOUS WASTE SITE

I. IDENT	IFICATION
01 STATE	02 SITE NUMBER

VEPA	PART 5 - WATER		PECTION REPORT APHIC, AND ENVIRONMENTAL DATA					
II. DRINKING WATER SUPPLY		-,	,					
01 TYPE OF DRINKING SUPPLY (Check as applicable)		02 STATUS				03	DISTANCE TO SITE	
SURFA	CE WELL	ENDANGER	D AFFECTED	МО	NITORED			
COMMUNITY A. T	B. 🗆	A. 🗆	B . □		cX:	Α.	(mi)	
NON-COMMUNITY C.	D . 🗆	₽. 🗆	€. □		F . □	B(mi)		
III. GROUNDWATER								
01 GROUNDWATER USE IN VICINITY (C	heck one)							
☐ A. ONLY SOURCE FOR DRINKIN	(Other sources availe	IDUSTRIAL, IRRIGATIO	(Limited other		USTRIAL, IRRIGA evalledie)	Pa use	Konorused unuseable tuxent Aquifer is ed for water in stern Virginia.	
02 POPULATION SERVED BY GROUND	WATERN/A	_	03 DISTANCE TO NE	AREST D	RINKING WATER	WELL	N/A (mi)	
04 DEPTH TO GROUNDWATER	05 DIRECTION OF GRO	OUNDWATER FLOW	06 DEPTH TO AQUIFE	R O	7 POTENTIAL YIE OF AQUIFER	LD	08 SOLE SOURCE AQUIFER	
	south	L		.(ft)	unknown	L (gpd)	□ YES 🟋 NO	
N/A								
10 RECHARGE AREA			11 DISCHARGE AREA	\				
© Kyes COMMENTS Partial rec	harge area of P	atuxent	□ YES COMM □XNO	MENTS				
IV. SURFACE WATER					,			
01 SURFACE WATER USE (Check one) [XA. RESERVOIR, RECREATION DRINKING WATER SOURCE		ON, ECONOMICALLY NT RESOURCES	C. COMME	RCIAL,	INDUSTRIAL	0	D. NOT CURRENTLY USED	
02 AFFECTED/POTENTIALLY AFFECTE	D BODIES OF WATER							
NAME:					AFFECTED	•	DISTANCE TO SITE	
Gillies Creek						<u>a</u>	long border (mi	
						_	(mi	
						_	(mi	
V. DEMOGRAPHIC AND PROPE	RTY INFORMATION							
01 TOTAL POPULATION WITHIN				02 DIS	STANCE TO NEAR	EST POP	JLATION	
ONE (1) MILE OF SITE A. <u>approx. 20</u> ,000 No of Persons	TWO (2) MILES OF SITE B. approx. 40, (No. of Persons		Drox 70,000			< 1/4	(mi)	
03 NUMBER OF BUILDINGS WITHIN TWO	O (2) MILES OF SITE		04 DISTANCE TO NE	AREST C	FF-SITE BUILDIN	G		
<u>unk</u>	unknown < 1/4 (mi)							
05 POPULATION WITHIN VICINITY OF S								
City of Richmond	is densely popul	lated (urban	area). Popu	latio	n of Rich	mond	is 219,429	

(Henrico Co. Map, 1981), populations near site approximated from total population.

POTENTIAL HAZARDOUS WASTE SITE

I. IDENTIFICATION								
OJ STATE	02 SITE NUMBER							

VII. SOURCES OF INFORMATION OF PERMEABILITY OF UNSATURATED ZONE (CHORS ON) AL 10-4-10-0 misson B. 10-4-10-0 cm/sec C. 10-4-10-3 m/sec D. GREATER THAN 10-3 m/sec OZ PERMEABILITY OF BEDROCK (CHORS ON) (AL 10-4-10-3 m/sec B. RELATIVELY IMPERMEABILE C. RELATIVELY PERMEABILE D. VERY PERMEA	SEPA		HIC, AND ENVIRONMENTAL DATA
OF PERMEABILITY OF MISSACH CONTROL S. 10-4 - 10-8 cm/sec C. 10-4 - 10-3 cm/sec D. GREATER THAN 10-3 cm/sec	VI. ENVIRONMENTAL INFORM	MATION	
DEPENDENBLY OF BEBROCK CHAPS and Content of the Con			
A IMPERIMEABLE DE RELATIVELY IMPERIMEABLE C. RELATIVELY PERMEABLE CONCRETE TO CONTROL	X A. 10 ⁻⁶ − 10)-8 cm/sec ☐ B. 10-4 - 10-6 cm/sec [☐ C. 10 ⁻⁴ - 10 ⁻³ cm/sec ☐ D. GREATER THAN 10 ⁻³ cm/sec
OB PETH TO BEDROCK 150-200 (tt) depth of landfill 70-100 unknown 06 NET PRECIPITATION 9 (m) 2.5 - 3.0 (in) 25 SOLE METHOD POTENTIAL SITE IS ON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOODWAY 11 DISTANCE TO WETLANDS IS SET REMOVED. 12 DISTANCE TO COMMERCIALINDUSTRIAL RESIDENTIAL AREAS, NATIONAL STATE PARKS, PRIME AG LAND A 1/2 (mi) B N/A (mi) B SOLE METHOD PETHOD FOR WILLIFE RESERVES PRIME AG LAND 14 DESCRIPTION OF SITE IS RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography. VII. SOURCES OF INFORMATION (CAN SURFICIAL RESIDENCE, S. 9. SING MELANDS ADDITION OF SITE IN RELATION TO SURFICIAL RESIDENCE, S. 9. SING MELANDS ADDITION OF SITE IN RELATION TO SURFICIAL RESERVES PRIME AG LAND 14 DESCRIPTION OF SITE IN RELATION TO SURFICIAL RESERVES BUILT to a greater elevation then the immediately surrounding topography.	02 PERMEABILITY OF BEDROCK (Chec	:k one)	
depth of landfill 70-L00 unknown Common	A. IMPER	RMEABLE D. 10 ⁻⁶ cm/sec) B. RELATIVELY IMPERMEAE (10 ⁻⁴ ~ 10 ⁻⁶ cm/sec)	
OF NET PRECIPITATION 9 (n) 2.5 - 3.0 (n) 2.5 - 3.0 (n) 2.5 - 3.0 (n) 0 SITE SLOPE 2.5 - 3.0 (n) 1 SITE SON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOOWAY 1 SITE SLOPE 2.5 - 3.0 (n) 1 SITE SON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOOWAY 1 SLOPE 2.5 - 3.0 (n) 1 SITE SON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOOWAY 1 SLOPE 2.5 - 3.0 (n) 1 SITE SON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOOWAY 1 SLOPE 2.5 - 3.0 (n) 1 SITE SON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOOWAY 1 SITE SON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOOWAY 1 SLOPE 2.5 - 3.0 (n) 1 SITE SON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOOWAY 1 SITE SON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOOWAY 1 SITE SON BARRIER ISLAN	03 DEPTH TO BEDROCK	04 DEPTH OF CONTAMINATED SOIL ZONE	05 SOIL pH
9	(11)		unknown
9 (in) 2.5 - 3.0 (in) 25 - 5.0 08 FLOOD POTENTIAL SITE IS IN N/A YEAR FLOODPLAIN 11 DISTANCE TO WETLANDS IS ACCE MATERIAND. ESTUARINE A N/A (mi) B N/A (mi) B N/A (mi) ENDANGERED SPECIES: N/A 13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTRIAL RESIDENTIAL AREAS. NATIONAL/STATE PARKS. FORESTS, OR WILDLIFE RESERVES PRIME AG LAND A < 1/2 (mi) D N/A (mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography. VII. SOURCES OF INFORMATION (COR SPECIES INFORMATION)	06 NET PRECIPITATION	07 ONE YEAR 24 HOUR RAINFALL	08 SLOPE DIRECTION OF SITE SLOPE TERRAIN AVERAGE SLOPE
SITE IS INN/A YEAR FLOODPLAIN SITE IS ON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOODWAY 11 DISTANCE TO WETLANDS IS sere monomen. ESTUARINE OTHER AN/A(mi) BN/A(mi) BN/A(mi) ENDANGERED SPECIES:N/A	("1)	(11)	1 25 I north to couth 1 25
11 DISTANCE TO WETLANDS (5 acre minimum) ESTUARINE OTHER A N/A (mi) B N/A (mi) B N/A (mi) DISTANCE TO WETLANDS (5 acre minimum) A N/A (mi) B N/A (mi) B N/A (mi) B N/A (mi) ENDANGERED SPECIES: N/A 13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTRIAL RESIDENTIAL AREAS: NATIONAL/STATE PARKS, FORESTS, OR WILDLIFE RESERVES PRIME AG LAND A < 1/2 (mi) B < 1/4 (mi) C N/A (mi) D N/A (mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography. VII. SOURCES OF INFORMATION (Cree specific references. 4.9. SIND (Mes. sample surbyes, reports)		☐ SITE IS ON BARR	RIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOODWAY
ESTUARINE A_N/A_(mi) B_N/A_(mi) B_N/A_(mi) ENDANGERED SPECIES: N/A 13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTRIAL RESIDENTIAL AREAS: NATIONAL/STATE PARKS: FORESTS, OR WILDLIFE RESERVES PRIME AG LAND A_<1/2_(mi) B_<1/4_(mi) C_N/A_(mi) D_N/A_(mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography.			12 DISTANCE TO CRITICAL HARITAT (A) and assets
A N/A (mi) B. N/A (mi) ENDANGERED SPECIES: N/A 13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTRIAL RESIDENTIAL AREAS: NATIONAL/STATE PARKS, PRIME AG LAND A < 1/2 (mi) B. < 1/4 (mi) C. N/A (mi) D. N/A (mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography.		,	NI / A
TS LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTRIAL RESIDENTIAL AREAS: NATIONAL/STATE PARKS, COMMERCIAL/INDUSTRIAL RESIDENTIAL AREAS: NATIONAL/STATE PARKS, FORESTS, OR WILDLIFE RESERVES PRIME AGLAND A < 1/2 (mi) B < 1/4 (mi) C N/A (mi) D N/A (mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography.	NI / A	N/A	
DISTANCE TO: COMMERCIAL/INDUSTRIAL RESIDENTIAL AREAS: NATIONAL/STATE PARKS, PRIME AGLAND A _ < 1/2 _ (mi) B < 1/4 _ (mi) C N/A _ (mi) D N/A _ (mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography.	(111)	B(mi)	ENDANGERED SPECIES:
RESIDENTIAL AREAS: NATIONAL/STATE PARKS. PRIME AGLAND A < 1/2 (mi) B < 1/4 (mi) C N/A (mi) D N/A (mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography.			
A _ < 1/2 _ (mi) B < 1/4 _ (mi) C _ N/A _ (mi) D N/A _ (mi) 14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography.	DISTANCE TO:	RESIDENTIAL AREAS: NATIC	ONAL/STATE PARKS AGRICULTURAL LANDS
Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography. WII. SOURCES OF INFORMATION (Creapedic references, e.g., state flee, sample analysis, reports)	COMMERCIAL/INDUST	RIAL FORESTS, OR WILDLII	IFE RESERVES PRIME AG LAND AG LAND
Before development of landfill, the topography sloped to the south towards Gillies Creek. The active landfill area was built to a greater elevation then the immediately surrounding topography.	A. < 1/2 (mi	B. < 1/4	(mi) c. N/A (mi) D. N/A (mi)
The active landfill area was built to a greater elevation then the immediately surrounding topography.	4 DESCRIPTION OF SITE IN RELATION	N TO SURROUNDING TOPOGRAPHY	
	The active landfill		
	II. SOURCES OF INFORMATIO	DN (Cite specific references, e.g., state files, sample analysis	s, reports)
	······································		

R. Stuart Royer and Associates, Inc. Report to city of Richmond's Department of Public Works dated 10/21/81

U.S.G.S. Quadrangle Map of Richmond, Virginia Interview with Ken Chestnut, Virginia State Department of Health, by William Wentworth of

•	رسي	
		Δ
	_	

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENT	IFICATION						
O1 STATE	02 SITE NUMBER						

YE		PA	RT 6 - SAMPLE AND FIELD INFORMATION	24
II. SAMPLE	S TAKEN			
SAMPLE 1	TYPE	01 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO	03 ESTIMATED DATE RESULTS AVAILABLE
GROUNDY	VATER	8 org/8 inorg	Environmental Research Group 117 North First Street, Ann Arbor, MI 48104	
SURFACE	WATER			RESULTS
WASTE				
AJR				PRESENTLY
RUNOFF	Ponded water	1 org/1 inorg	SAME AS ABOVE	
SPILL				AVAILABLE
SOIL	leachate sediments	2 org/2 inorg	SAME AS ABOVE	
VEGETATI	ON			1
OTHER				
III. FIELD M	EASUREMENTS TA	KEN		
01 TYPE		02 COMMENTS		
рĦ		groundwater	pH varied from 5.6 to 7.0	
		Broamanast		***
IV BUOTO	RAPHS AND MAPS			
	GROUND AERIAL		22 IN CUSTODY OFNUS Corporation	
03 MAPS	04 LOCATION		(Name of organization or individual)	
□XYES	•		I Site Inspection Report	
U OTHER E		CTED (Provide narrative desci		
V. OTHER P	TELD DATA COLLEC	31ED Provide Mariative descri	poort	
27/1				
N/A				
W 00:17:-	0 05 NJE0311 15:3			
VI. SOURCE	S OF INFORMATIO	N (Cite specific references, e.g.	:. ztate files, sample analysis, reports)	
Chair	of Custody,	Traffic Repor	ts	
	,,	•		

\$EPA			ECTION REPORT NER INFORMATION	VA 1	2 SITE NUMBER 24
II. CURRENT OWNER(S)			PARENT COMPANY (# applicable)		
OI NAME City of Richmond		02 D+B NUMBER	08 NAME N/A		09 D+B NUMBER
O3 STREET ADDRESS (P. O. Box, RFD #, etc.)		04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, etc.)		11 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
Richmond		23219			
01 NAME		02 D+B NUMBER	08 NAME		09 D+B NUMBER
N/A			N/A		
O3 STREET ADDRESS (P.O. Box, RFD #, etc.)	·- ·· ·· · · ·	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, etc.)	•	11 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
01 NAME N/A		02 D+B NUMBER	08 NAME N/A	l	09 D+B NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, etc.)		11SIC CODE
05 CITY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
01 NAME		02 D+B NUMBER	OB NAME		09 D+B NUMBER
N/A 03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	N/A 10 STREET ADDRESS (P.O. Box. RFD P. etc.)		1 1 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
III. PREVIOUS OWNER(S) (List most recen	t feet)	·	IV. REALTY OWNER(S) (H applicable: ht	et most recent first:	
O1 NAME	(mst)	02 D+B NUMBER	01 NAME	si musi recent inst,	02 D+B NUMBER
Unknown			N/A		
03 STREET ADDRESS (P.O. Box, RFD e, etc.)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME		02 D+B NUMBER	01 NAME		02 D+B NUMBER
N/A			N/A		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME		02 D+B NUMBER	01 NAME	1	02 D+B NUMBER
N/A			N/A		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE
05CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
V. SOURCES OF INFORMATION (CR.	specific references, o	.g., state files, sample analys	is, reports)		
NUS - Preliminary Ass	sessment (dated 6/16/83	3		
PA FORM 2070-13 (7-81)					

0 ED4		PC	OTENTIAL HAZ	ARDOUS WASTE SITE	I. IDENTIFICATION					
\$EPA				CTION REPORT ATOR INFORMATION	VA VA	2 SITE NUMBER 1 2 4				
II. CURRENT OPERATO	R (Provide # different from	owner)		OPERATOR'S PARENT COMPA	NY (If applicable)					
01 NAME			02 D+B NUMBER	10 NAME		11 D+B NUMBER				
Mr. Ryman J	ones			N/A						
03 STREET ADDRESS (P.O. Bo	x, RFD #, etc.)		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, etc.)		13 SIC CODE				
East Richmon	nd Road		1							
05 CITY		06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE				
Richmond		VA	23219							
08 YEARS OF OPERATION	on name of owner city of Ric	chmor	nd							
III. PREVIOUS OPERAT	OR(S) (List most recent fire	(; provide on	ly if different from owner)	PREVIOUS OPERATORS' PAREI	NT COMPANIES	f sonicable)				
01 NAME			02 D+B NUMBER	10 NAME	11 D+B NUMBER					
N/A				N/A						
03 STREET ADDRESS (P.O. Bo	x, RFD#, etc.)		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, etc.,)	13 SIC CODE				
05 CITY	1	D6 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE				
08 YEARS OF OPERATION	09 NAME OF OWNER D	URING THI	SPERIOD							
01 NAME			02 D+B NUMBER	10 NAME		11 D+B NUMBER				
N/A				N/A						
03 STREET ADDRESS (P.O. Box	r, RFD#, etc.)		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, etc.)		13 SIC CODE				
05 CITY	1	D6 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE				
08 YEARS OF OPERATION	09 NAME OF OWNER D	URING THI	S PERIOD			1				
01 NAME	·		02 D+B NUMBER	10 NAME	, ,	11 D+B NUMBER				
N/A				N/A						
03 STREET ADDRESS (P.O. Box	, RFD #, etc.)		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, etc.)	ı	13 SIC CODE				
05 CITY	l e	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE				
08 YEARS OF OPERATION	09 NAME OF OWNER D	URING TH	S PERIOD							
IV. SOURCES OF INFO	RMATION (Cite apecific i	references, s	e.g., state files, sample analy:	sis, reports)						
NUS - Prelin	ninary Assess	ment	dated 6/16/8	33						
	,			•						
				·						

	POTENTIAL HAZARDOUS WASTE SITE		I. IDENTIFICATION
⊕EPA	SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES		VA 124
II. PAST RESPONSE ACTIVITIES			
01 A. WATER SUPPLY CLOSED 04 DESCRIPTION N/A	O2 DATE	03 AGENCY	
01 D B. TEMPORARY WATER SUPPLY PROVIDENCE OF DESCRIPTION	DED 02 DATE	03 AGENCY	
N/A			
01 C. PERMANENT WATER SUPPLY PROVIDED OF DESCRIPTION	DED 02 DATE	03 AGENCY	
N/A			
01 D. SPILLED MATERIAL REMOVED 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A	OO DATE	OO AOENOV	
01 ☐ E. CONTAMINATED SOIL REMOVED 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A 01 □ F. WASTE REPACKAGED 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 G. WASTE DISPOSED ELSEWHERE 04 DESCRIPTION	O2 DATE	03 AGENCY	
N/A			
01 DH. ON SITE BURIAL 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A 01 □ I, IN SITU CHEMICAL TREATMENT	O2 DATE	02.405107	
04 DESCRIPTION N/A	UZ DATE	US AGENCY	
01 D J. IN SITU BIOLOGICAL TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 K. IN SITU PHYSICAL TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 L ENCAPSULATION 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A 01 M. EMERGENCY WASTE TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 D. CUTOFF WALLS 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 IX O. EMERGENCY DIKING/SURFACE WATE 04 DESCRIPTION Prior to landfilling operation, (r diversion 02 date 1960 Gillies Creek was rechanneled sou		•
01 □ P. CUTOFF TRENCHES/SUMP 04 DESCRIPTION N/A	02 DATE	03 AGENCY	
01 Q. SUBSURFACE CUTOFF WALL 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			

O EDA	F			ARDOUS WASTE SITE	I. IDENTIFICATION 01 STATE 02 SITE NUMBER					
\$EPA	PART			CTION REPORT RANSPORTER INFORMATION	VA 12					
II. ON-SITE GENERATOR										
01 NAME		02 D+B	NUMBER							
N/A				1						
03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04	SIC CODE	7						
05 CITY	06 STATE	07 ZIP C	ODE	7						
III. OFF-SITE GENERATOR(S)										
O1 NAME		02 D+B	NUMBER	01 NAME		02 D+B NUMBER				
Various/Unknown	4	<u> </u>		N/A						
D3 STREET ADDRESS (P.O. Box, RFD #, etc.)		04	SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE				
05 CITY	06 STATE	07 ZIP C	ODE	05 CITY	06 STATE	07 ZIP CODE				
01 NAME		02 D+B	NUMBER	01 NAME	1	02 D+B NUMBER				
N/A				N/A						
03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04	SIC CODE	03 STREET ADDRESS (P.O. Box. RFD +, etc.)		04 SIC CODE				
05 CITY	06 STATE	07 ZIP C	ODE	05 CITY	06 STATE	07 ZIP CODE				
IV. TRANSPORTER(S)	i	<u>. </u>								
D1 NAME		02 D+B	NUMBER	01 NAME		02 D+B NUMBER				
Various/Unknown				N/A						
D3 STREET ADDRESS (P.O. Box, RFD #, etc.)		04	SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE				
D5 CITY	06 STATE	07 ZIP C	ODE	05 CITY	06 STATE	07 ZIP CODE				
O1 NAME		02 D+B	NUMBER	01 NAME		02 D+B NUMBER				
N/A				N/A						
D3 STREET ADDRESS (P.O. Box, RFD #, etc.)		04	SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE				
					loc etate	Log Zin Cons				
D5 CITY	06 STATE	07 ZIP C	ODE	05 CITY	06 STATE	07 ZIP CODE				
V. SOURCES OF INFORMATION (Crespe	cilic references.	e.g., state fi	les, sample analysis	, reports)						
DA FORM 0070 12 /7 811										

_	
	\Box A

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

I. IDENTIFICATION

01 STATE 02 SITE NUMBER

VA 124

	PART 10 - PAST RESPONSE ACTIVITIES	VA 1124
AST RESPONSE ACTIVITIES (Continued)		
01 ☐ R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
N/A 01 ZAS. CAPPING/COVERING	02 DATE9/83	03 AGENCY city of Richmond
04 DESCRIPTION	ng to the Royer and Associates plan	•
01 T. BULK TANKAGE REPAIRED	02 DATE	03 AGENCY
04 DESCRIPTION N/A		
01 D U. GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
N/A		
01 D V. BOTTOM SEALED 04 DESCRIPTION	02 DATE	03 AGENCY
N/A		
01 (X.W. GAS CONTROL 04 DESCRIPTION Methane gas venting constru	O2 DATE _unknown ucted to prevent gas migration.	03 AGENCYCITY Of Richmond
01 X. FIRE CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY
04 DESCRIPTION		
04 DESCRIPTION N/A 01 X Y. LEACHATE TREATMENT		
04 DESCRIPTION N/A 01 XY, LEACHATE TREATMENT 04 DESCRIPTION		03 AGENCY
04 DESCRIPTION N/A 01 X Y. LEACHATE TREATMENT 04 DESCRIPTION Leachate collected and treatment 01 □ Z. AREA EVACUATED	02 DATE ated by the Richmond Waste Water '	03 AGENCY
04 DESCRIPTION N/A 01 XY. LEACHATE TREATMENT 04 DESCRIPTION Leachate collected and treatment	02 DATE ated by the Richmond Waste Water '	03 AGENCY Freatment Plant.
04 DESCRIPTION N/A 01 XY. LEACHATE TREATMENT 04 DESCRIPTION Leachate collected and treat 01 □ Z. AREA EVACUATED 04 DESCRIPTION N/A 01 □ 1. ACCESS TO SITE RESTRICTED	02 DATE ated by the Richmond Waste Water '	03 AGENCY Treatment Plant. 03 AGENCY
04 DESCRIPTION N/A 01 XY. LEACHATE TREATMENT 04 DESCRIPTION Leachate collected and trea 01 □ Z. AREA EVACUATED 04 DESCRIPTION N/A 01 □ 1. ACCESS TO SITE RESTRICTED 04 DESCRIPTION	02 DATE ated by the Richmond Waste Water '	03 AGENCY Treatment Plant. 03 AGENCY
04 DESCRIPTION N/A 01 XY. LEACHATE TREATMENT 04 DESCRIPTION Leachate collected and treat 01 Z. AREA EVACUATED 04 DESCRIPTION N/A 01 L. ACCESS TO SITE RESTRICTED	O2 DATE ated by the Richmond Waste Water ' O2 DATE O2 DATE	03 AGENCY
04 DESCRIPTION N/A 01 XY. LEACHATE TREATMENT 04 DESCRIPTION Leachate collected and treatment 04 DESCRIPTION N/A 01 D 1. ACCESS TO SITE RESTRICTED 04 DESCRIPTION N/A 01 D 2. POPULATION RELOCATED	O2 DATE ated by the Richmond Waste Water ' O2 DATE O2 DATE	03 AGENCY Freatment Plant.

N/A

HL SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

NUS - Preliminary Assessment dated 6/16/83.

R. Stuart Royer and Associates, Inc. Report dated 1021/81

Telecon with Buddy Palmare, Director, Collection and Disposal, city of Richmond, dated 4/30/84, phone number (804) 780-6177.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

I. IDENT	IFICATION
01 STATE VA	02 SITE NUMBER 124

II. ENFORCEMENT INFORMATION

01 PAST REGULATORY/ENFORCEMENT ACTION YES ... NO

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

On November 28, 1977, the city of Richmond was granted a nonconforming permit to operate the East Richmond Road Landfill. The permit was issued in order to allow a reasonable amount of time for the city to bring the landfill operation into compliance with the rules and regulations of the Virginia State Board of Health. On July 16, 1982, a new solid waste management permit (no. 290) for operating a sanitary landfill was issued to the city of Richmond.

III. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

NUS - Preliminary Assessment dated 6/16/83.

SECTION 6

-

Site Name: East Richmond Road TDD No.: F3-8305-38

- 6.0 LABORATORY DATA
- 6.1 Sample Data Summary

SAMPLE DATA SUMMARY

Site Name EAST	BICHNONO	RUAC L.F.
Date of Sample	6/8/83	

(Red)

TDD Num	ber $F3-830$	`		TARGET COMPOUNDS									Site Na	me EA	ST RIC	11/2/20	RUAD L.	<u>c. </u>	
	ber//A -//			-			包	Organic	□ In	organic			D	ate of Sa	mple	6/8	17.3		
Soli wet		J. J	/ new	, k		/,~		7	inds Dete		<u> </u>			<u>, </u>	-				
Sample	Sample Description and Location	Phase	Units	OP CE	PATHOLIS S	e of the state of	MARLON'S CH	Day State	Ser Et Little Ret	C. Haye	Service of Hilling	CHORE CHOR	R. J. Lear	A THE PROPERTY.	ATT CHECK		Parties F	Remarks	
23232	WE4 #1	Aψ	19/4	0.064	0.006	0.001	20.01												
	WE4 #1	Ap	mg/L	0.020	\$ 20.010														
	Weu #3	Αų	mg/L	0.013	0.001			0.00/	20.01	0.03\$	20.01			١.					
•	WELL # 5	Aψ	m./1	0.033															
	WELL #6	Aq	rng/L	0,029	40.01			20.01	0.03			20.01	0.04	20.01					
:3237	WELL #7	Aφ	ng/L	0.032	20.01										40.01				
-3138	WELL # 8	Aq	mg/L	0.019	40.009			∠ 0.009								10.01			

60.01 BCANK 0.019 20.01 0.22 €0.01 0.068 0.010 67.6% solid 10.01 **40.019** 0.013 79.0% solid 0-11

mg// 0.24 0.027 SeI. 40.01 60.01 0.067 0.03

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

0.022 40.01

0.046 20.01

Aq

Aq

WELL # 10

PONCED WATER

[♦] Denotes results of questionable qualitative significance based upon quality assurance review of data.

SAMPLE DATA SUMMARY TARGET COMPOUNDS Organic

☐ Inorganic

Site Name EAST RICHNEYS ROPE C.F.

Date of Sample 6/2/23

					Compounds Detected													
	d sample results weight.	repor	ted as		S. Like	is of the	//	23,16	``\ `\ `\;\	14/6/2/2/2	*/	R ST	24/6	THE WEST	Striet (ر ځلون ،	Remarks
Sample Number	Sample Description and Location	Phase	Units	<i>/</i>	Charling H.	Magaari	DHE BOL	Jan Lillage Res		Santifficate	White Salar	RATION SO	Solver of the second se	Joseph Comment	John Care	Participe No.	A Signal	Remarks
23232	WELL #1	Aq	mg/L															
<u> 23</u> 233	WEU #2	AQ	19/2															
. 343Y	WELL #3	Ap	mg/L															
: 3235	WELL #5	£=,	ms/L															
c3236	WELL #6	Aq	14/4															
. ₹3237	ω <i>ξ</i> μ #7	Aq	18/4															
63738	WELL #8	Aq	mg/L															
:3240	WEH #10	Aq	ng/L	20.01														
c3241	PONDED WATER	Au	mg/L															
c 3242	BLANK	A	mg/L.		<.01													
:3244	Leachate #1	Scd.	ng/45	0.010		1.1	0.15	0-029	0.079	0-076	1-059	20.01	0.25	0.504	0.04	0.31		67.67. solid
:3245	Leachate #2	Sol	mg///g	<0.01	<.01 ⁰	0.063			0.12	15	2.6	0.048	0.28	1.0	0.067	0.70	0.018	79.0% sold
: 3276.	BLANK SOLIO	sed	ms//5	1														
																		6

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

 $[\]diamond$ Denotes results of questionable qualitative significance based upon quality assurance review of data.

SAMPLE DATA SUMMARY TARGET COMPOUNDS

Organic ☐ Inorganic Site Name EAST RICHNOND ROAD C.F.

Date of Sample 6/2/43

											Compou	ınds Detec	ted				
	d sample results weight.	repor	ted as			J. jegi	, <u>,</u> ,		10 10 10 10 10 10 10 10 10 10 10 10 10 1				/,/	, sinth		Religion So	000
Sample Number	Sample Description and Location	Phase	Units		Ellipsi de la	Eding and the	c the first	And taken		coldinate of	Je into			Segal Maiththe		Setting &	Remarks
c3232	WELL #1	A	ng/L														
:3233	WEU #2	Aq	rg/L														
1,234	WELL #3	AQ	ng/=											`.			
:3235	WELL #5	Aq	mg.//														
.E23/	WELL #6	Aq	mg/L														
c3237	WELL#7	Aq	m²/1														
03232	1-VELL #8	AQ	ng/1														
c37. 1 0	WELL # 10	Aq	mg/1														
c3241	PONDED WATER	Ap	ng/1														
c3242	BLANK	Aq	ng/_														
c 3244	Leachate#1	Sel.	ms/1/2	0.621	0.029	0.482	0.57	0-033	0.242	0.55		20.01				0.61	67.6% solid
c3245	Leachate #2	SoJ.	ms//g				77	0.058	50	75	·		0,035			0.33	79.0% solid
c3246	BLANK SOLID	SeJ.	ng/kg									0.01		0.0020	∠0.000		
						·						T					

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

EPA Number

Oenotes results of questionable qualitative significance based upon quality assurance review of data.

רח Number	<u>F</u> :	<u> </u>	-3871	
PA Number	VA	-124		

Organic Inorganic

Site Name Fast Richmond Md. L. F.

Date of Sample 6/8/8.3

				Compounds Detected .															
				/	The state of the s	A STATE OF THE STA	<u> </u>	ilde /		<i>i</i>	//	/	Secretary N	/ /		ige /	<i> </i>		
Sample Number	Sample Description and Location	Phase	Units			, so l	Sile &	A S	* S		\$ / \$		Sign (\$ A	35E 1	Society Chi		Remarks	;
MC0910	Well #1	Aq.	mg/L	180	0.045	1.9	0.011	0.096	0 70	370	0.19	1.5	0,20	0.8	0.7	0,002			
MC0911	Well #2	Aq.	mg/L	0.50		0.16		a 006	\$ 0.032	9		0.26	0.10	0.2					
MC0912.	Well #3	Aq.	mg/L	180	0.42	2.8	0.014	0.11	0.36	330	0.16		/, ك	0.6	1.7	0.003			
MC0913	Well #5	Aq.	mg/L	4.4	0.018	0.74		0.022	0-11	22	0. 04	0.66	0.18	0.3					
MC 0914	Well#6	Aq	mg/L	0.81	0.010	0.78		0.018	0.022	31:	0.02	0.81	a 064	0.3					
MC0915	Well #7	Aq	mg/L	42	0.35	0.38	0.016	0,054	0.16	350	0.14	5.0	0.40	0.4	0.2	0.002			
MC09/6	Well #8	Aq	mg/L	1.4	0.008	0.17		0.022	0.024	5	0.03	0.17	Q 075	0.3		0.002			
MC <i>0</i> 918	Well # 10	Aq.	mg/L	310	1.1	1.8	0.021	0.15	0.56	860	0.56	5.3	1.8	0.4	0.6				
MC0919	Ponded Water	Aq.	mg/L	0.92	0.006	0.//		2006	0.009	/		0.016	0.45						
MC0920	Blank	Aq.	mg/L	0.04				0.004	0.007		0.01		0.093	0.1					
MC <i>09</i> 22	Leachate #1	Sed.	mg/Kg	12000	49	130		7	63	40000	/3	200	440	6.6	40	2.7			
MC0923	Leachate#2	Sed	mg/kg	9900	35	58		6	42	26000	9.7	160	150	1.6		1/2			
MCO9XI	Blank (Solid)	Sed.	ma/kg																
																			•

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

 $[\]Diamond$ Denotes results of questionable qualitative significance based upon quality assurance review of data.

TDD Number F3 - 8305 - 38 Å

EPA Number VA - 124

TARGET COMPOUNDS

Site Name <u>Fast Richard Rd L.F</u>

Date of Sample <u>6/8/83</u>

Compounds Detected "Ne Cley Salite Sample Sample Description Number and Location Phase Units Remarks 0.030 0.37020 0.89 mg/L 0.045 0.15 0.0020 MC0910 mg/L 0.015 Aq. 0.003 Aq. Mg/L 0.024 0.011 A9. mg/L MC0915 Well #7 0.018 my/L 0.03 mg/L MC0918 Well #10 mg/L MC0919 Ponded Water 0.0.3 mg/L Mc0920 Blank 0.04 0.006 MCO922 Leachate #1 200 MC0923 Leachate #2 120 MO924 Blank (Solid).

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

Oenotes results of questionable qualitative significance based upon quality assurance review of data.

Site Name: East Richmond Road
TDD No.: F3-8305-38

6.2 Quality Assurance Review

6.2.1 Organic Data: Lab Case 1794

6.2.1.1 Introduction

The findings offered in this report are based upon a general review of all laboratory data generated by a subcontract laboratory which performed analysis for organic priority pollutants, according to the requirements outlined in NUS Internal Correspondence Number C-585-6-3-24. Blank results, surrogate and matrix spike recoveries, duplicate analysis results, G.C. confirmations and target compound

matching quality were examined in detail.

6.2.1.2 Qualifiers

It is recommended that this data package be utilized only with the following

qualifier statements:

o All positive results for bis (2-ethylhexyl) phthalate, di-n-butyl phthalate, butyl benzyl phthalate, diethyl phthalate, trichloroethene, ethylbenzene, benzene,

tetrachloroethene, chloroform and toluene may be questionable.

o The result for di-octyl phthalate in sample C-3244 may be questionable.

o The result for n-nitrosodimethylamine in sample C-3245 may be questionable.

o The reported result for trans-1,2-dichloroethene in sample C-3234 is incorrect

and actually represents the presence of cis-1,2-dichloroethene.

o Actual levels of VOA compounds in sample C-3234 may be slightly higher than

reported.

o Actual levels of acenaphthylene may be slightly higher than reported in sample

C-3244.

6-2

TDD No.: F3-8305-38

o Detection limits for benzidine in sample C-3232 may be slightly higher than that reported. Additionally, in sample C-3244 the detection limit for benzidine may be significantly higher than that reported.

- o Detection limits for 2,4-dimethylphenol, 2,4-dichlorophenol, 2-nitrophenol, p-chloro-m-cresol, nitrobenzene, n-nitroso-n-propy-l-propanamine, 2-chloronaphthalene and dimethyl phthalate may be slightly higher than reported in sample C-3244.
- o Detection limits for p,p'-DDT and beta-endosulfan may be slightly higher than those reported for sample C-3232.
- o Actual values for PCB-1260 may differ significantly from those reported.
- o The reported value for benzo-(k)-fluoranthene in sample C-3244 may not reflect the average concentration of this constituent.
- o BNA compound detection limits for solid samples are actually 10 times higher than those reported. Additionally, all reported BNA compounds in solid samples, at concentrations less than .5 mg/kg, are considered approximate values.
- o Tentatively identified compounds were reported by the laboratory but are not included in this report.

6.2.1.3 Findings

- o Bis (2-ethylhexyl) phthalate, di-n-butyl phthalate, butyl benzyl phthalate, diethyl phthalate, trichloroethene, ethylbenzene, benzene, tetrachloroethene, chloroform and toluene were detected in field and/or laboratory blanks at levels sufficient to question the aforementioned sample results.
- o The presence of di-octyl phthalate in sample C-3244 is questioned because this compound is a common laboratory contaminant, and was found at less than detection limits.

TDD No.: F3-8305-38

o Results for sample C-3245 did not include spectra for n-nitrosodimethylamine, phenol and 2,4-dimethylphenol. Additionally, sample C-3244 did not include spectra for phenol. It is expected that receipt of these spectra will verify the presence of the acid compounds. However, examination of available raw data suggests that the reported result for n-nitrosodimethylamine in sample C-3245 may be an artifact of a computer misidentification which was not carefully reviewed by the laboratory.

- o The relative retention time of 1,2-dichloroethene in sample C-3234 does not match that of the trans-isomer in the standard. Thus, the spectrum match indicates the presence of the cis-isomer in this sample.
- o Surrogate spike recoveries for VOA compounds in sample C-3234 were very low.
- o Matrix spike recovery for benzidine was very low in sample C-3232 and was zero in sample C-3244.
- o The matrix spike compounds: 2,4-dimethyl phenol, 2,4-dichlorophenol, 2-nitrophenol, p-chloro-m-cresol, n-nitroso-n-propyl-1-propanamine, 2-chloronaphthalene, dimethyl phthalate, nitrobenzene and acenaphthylene exhibited very low recoveries in sample C-3244.
- o Sample C-3232 exhibited very low matrix spike recoveries for p,p'-DDT and beta-endosulfan.
- o The pesticide analysis narrative report states that due to numerous sulfur treatments and low extract volumes, quantitation could not be accurately performed for PCB 1260.
- o Duplicate analysis results for benzo(k)fluoranthene in sample C-3244 revealed a high relative percent difference for this compound.

TDD No.: F3-8305-38

o The reported solid sample BNA detection limits were not calculated from the correct extract concentration factor. Since the correct detection limit values are .1 mg/kg, reported results less than this detection limit should only be considered approximate.

o Per EPA request, tentatively identified compounds were examined only for possible target compound identifications.

6.2.1.4 Summary

The attached Quality Assurance Review has identified the aforementioned areas of concern. The analysis lab has been requested to submit the missing target compound spectra for samples C-3244 and C-3245. Please see the accompanying Support Documentation Appendix for specifics on this Quality Assurance Review.

Report prepared by Atwood F. Davis May 2, 1984

6-5

William.

TDD No.: F3-8305-38

6.2.2 Inorganic Data: Lab Case 1794

6.2.2.1 Introduction

The findings offered in this report are based upon a general review of all available

inorganic laboratory data generated by a subcontract laboratory, which performed

the analyses according to requirements outlined by NUS Internal Correspondence

Number C-585-6-3-24. Blank analysis results, matrix spike recoveries, duplicate

analysis results and reported detection limits were examined from laboratory

tabulated report sheets.

6.2.2.2 Qualifiers

It is recommended that this data package be utilized only with the following

qualifier statements:

All aqueous sample results for cadmium and antimony may be questionable.

o All aqueous sample results for zinc and boron may be questionable, except for

zinc in samples MC-0912 and MC-0918 and for boron in sample MC-0919.

o The results for cobalt in samples MC-0911, MC-0914 and MC-0919 may be

questionable.

o The results for copper in samples MC-0911, MC-0914, MC-0916 and MC-0919

may be questionable.

o The results for nickel in samples MC-0913, MC-0914 and MC-0916 may be

questionable.

o The results for tin in samples MC-0911, MC-0913, MC-0914, MC-0916 and MC-

0919 may be questionable.

6-6

- o Several EPA contractual required detection limits were not met by the laboratory. Solid samples detection limits were not met for lead, mercury and tin. Aqueous sample detection limits were not met for iron, thallium and tin.
- o Detection limits for selenium may be significantly higher than those reported.

6.2.2.3 Findings

- o Cadmium, antimony, zinc, boron, cobalt, copper, nickel and tin were detected in field and/or laboratory blanks at levels sufficient to question the aforementioned sample results.
- o Required detection limits not met and reported detection limits are listed below:

Matrix	Parameter	Reported		Required	
Solid	Lead	3	mg/kg	0.5	mg/kg
	Mercury	0.1	mg/kg	0.02	mg/kg
	Tin	20	mg/kg	2	mg/kg
Aqueous	Iron	1	mg/kg	0.05	mg/L
	Thallium	0.02	mg/L	10.0	mg/L
	Tin	0.06	mg/L	0.02	mg/L

o Selenium exhibited a matrix spike recovery of zero for both the aqueous and solid sample spikes.

ORIGINAL (Red)

Site Name: East Richmond Road

TDD No.: F3-8305-38

6.2.2.4 Summary

The attached Quality Assurance Review has identified blank contamination, poor matrix spike recoveries, and the inability of the laboratory to meet required detection limits as the primary areas of concern. However, these samples were analyzed under a older subcontract which did not require the laboratory to supply any raw data. Consequently, this review has been limited to evaluation of the laboratory's sample report summaries and tabulated matrix spike recoveries. In particular, it was not possible to examine the laboratory's raw data for possible artifacts due to carryover effects, calculation errors, transcription errors unreported contaminants, verification of standard linearity and calibration check standards. Please see the attached Support Documentation Appendix for specifics on this Quality Assurance Review.

Report prepared by Atwood F. Davis Jar Date: April 28, 1984

SECTION 7

TDD No.: F3-8305-38

7.0 TOXICOLOGICAL EVALUATION

7.1 Summary

Groundwater samples from beneath the East Richmond Road landfill revealed substantial concentrations of toxic heavy metals lead and chromium in 3 monitoring wells. The concentrations of lead reported in these wells could lead to overt signs of plumbism if water from these wells were to be consumed over an extended period of time. Other heavy metals and toxic contaminants such as thallium, mercury, barium, and arsenic were reported in one or more monitoring wells at potentially toxic concentrations. Trace levels of known and suspected carcinogens such as vinyl chloride and dibenzo(a,h)anthracene were also reported in monitoring well samples. Reported concentrations of heavy metals were sufficiently high to possibly preclude future potable use of groundwater beneath the site. Note that local residents receive their water from the city of Richmond.

Two leachate samples revealed the presence of notable levels of lead and thallium. The common urban contaminants, polynuclear aromatic hydrocarbons, were reported in both leachate samples. Low levels of the toxic and biocumulative contaminant, PCB 1260, were also reported.

7.2 Support Data

Measurable concentrations of toxic contaminants such as lead, thallium, chromium, and barium were each reported in several sampled monitoring wells (MW). Lead was reported in MWs 1, 3, and 10 at concentrations of 890,280, and 980 ug/l, respectively, far exceeding Maximum Contaminant Levels (MCL) of 50 ug/l set for public water supplies. Chromium was reported at concentrations exceeding the MCL of 50 ug/l in MWs 3 (420 ug/l), 7 (350 ug/l), and 10 (1,100 ug/l). Reported thallium concentrations ranged from 30 to 460 ug/l, exceeding recommended critieria for the protection of human health in potable water of 13 ug/l in 7 of 8 monitoring wells sampled. Reported barium concentrations (1,800 to 2,800 ug/l) exceeded the MCL of 1,000 ug/l in MWs 1, 3, and 10. Mecury was reported in MW 1 at a concentration of 2 ug/l, equalling the MCL.

Lead at the highest reported concentration (980 ug/l) may be decidely toxic and may produce renal impairment as well as CNS effects such as irritability, headaches, loss of memory, muscle tremor, and ataxia if consumed over extended periods of time. The reported concentrations of lead would be even more hazardous to children who are particularly susceptible to the toxic effects of this metal.

The nature of chromium in MWs (chromium III or VI) cannot be ascertained from current data. Although hexavalent chromium has long been recognized as a toxic and carcinogenic substance, trivalent chromium is considered by most investigators to be relatively innocuous and even essential to human health in microgram amounts. The MCL for chromium in public water supplies has been set at 50 ug/l (total chromium) and is thought to provide an adequate margin of safety due to the poor absorption of chromium from the gastrointestinal tract. Humans have reportedly consumed from 1,000 to 25,000 ug/l chromium in drinking water for periods of up to 3 years without known effects on health (Davids and Lieber, 1951)*. The weight of evidence from human and animal studies also suggests no carcinogenic response from ingested chromium.

An acceptable daily thallium intake (ADI) of 37.1 ug has been recommended for man (U.S. EPA, 1980). This criterion incorporates a safety factor of 1,000 due to a lack of long term or acute human data. The thallium induced toxic effect to which man is most sensitive is believed to be alopecia, which may occur following ingestion of 3,100 to 7,800 ug thallium per kg body weight (Munch, 1934). Note that the reported MW thallium concentrations exceed the ADI, but still fall within the 1,000-fold safety factor.

Ingestion of soluble barium salts may pose increased risks for persons with a history of heart disease; however, the average daily human intake of barium is 16 mg, well above the concentrations reported in the East Richmond Road landfill monitoring wells.

* Davids, H.W., and Lieber, M. 1951. underground water contamination by chromium wastes. Water Sewage Works 98: 528-534.

Site Name: East Richmond Road
TDD No.: F3-8305-38

Beryllium, arsenic, vinyl chloride, and dibenz(a,h)anthracene, potential or known human carcinogens, were also reported in several monitoring wells at concentrations ranging from 11 to 21 ug/l (Be), 3 to 45 ug/l (As), and less than 10 ug/l (vinyl chloride and dibenz(a,h)anthracene). Theoretical long-term consumption of water contaminated with the reported concentrations of these contaminants may result in an increased carcinogenic risk. Note that the concentration of arsenic reported in MW 1, 45 ug/l, approaches the MCL of 50 ug/l.

A low level (30 ug/l) of the chlorinated solvent, 1,1-dichloroethane (1,1-DCE) was reported in MW 6. While insufficient information is available to determine whether 1,1-DCE is carcinogenic, note that a related compound, 1,2-dichloroethane, has been associated with cancer in laboratory rodents. The aesthetically objectionable metals iron and manganese were also reported at excessive levels, 5,000 to 860,000 ug/l (Fe) and 170 to 6,100 ug/l (Mn), in all sampled wells.

Groundwater in the vicinity of the landfill is believed to flow south towards the Gillies Creek channel. While no information on the current quality of Gillies Creek water is available, note that the creek flows in a concrete channel, which may provide an effective barrier to groundwater flow.

Two leachate seeps sampled on site revealed the presence of lead at concentrations of 120 to 200 mg/kg, in excess of average lead concentrations generally reported in non-polluted soils of 15 mg/kg (range 2 to 200 mg/kg). Thallium, generally reported in natural soil at a concentration of 1 mg/kg, was reported in both leachate seeps at a concentration of 10 to 14 mg/kg. Sorption of lead and thallium to soil particles appears to be the dominant mechanism controlling the fate of these heavy metals in the environment. At low pH values, sorption is apparently not as effective as it is at neutral or even alkaline pH.

Leachate samples also revealed the presence of the common urban contaminant, polynuclear aromatic hydrocarbons (PAH). Leachate sample no. 2 revealed about 222 mg/kg PAHs, significantly higher than the concentration reported in leachate sample no. 1 (about 3.8 mg/kg).

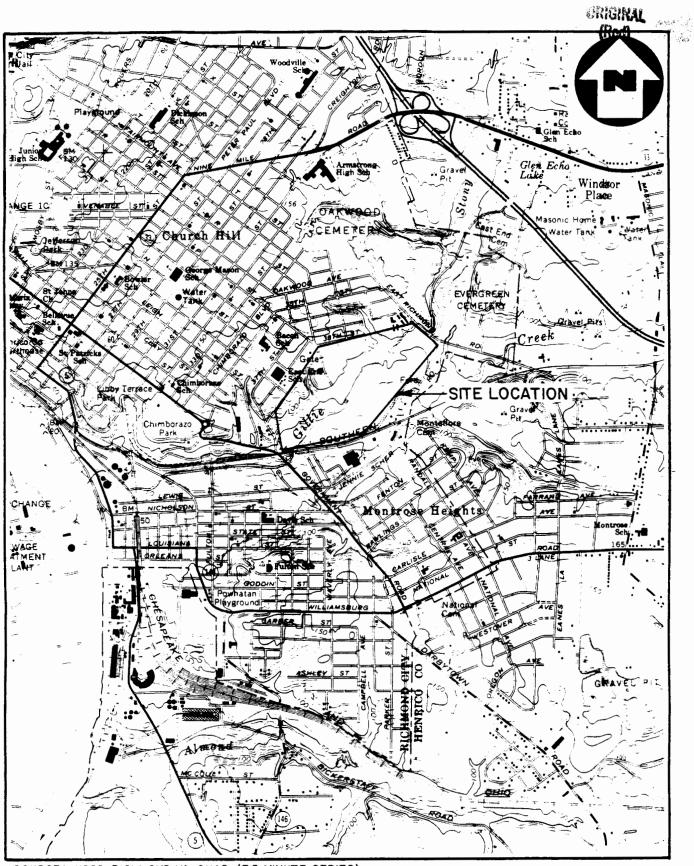
Ongikal

Site Name: East Richmond Road

TDD No.: F3-8305-38

PAHs are commonly found in coal tars and creosotes. Potentially carcinogenic PAHs such as benzo(a)anthrancene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)anthrance were reported in both leachate samples. The reported concentrations of these potentially carcinogenic contaminants were generally low, on the order of about 0.01 to 1.06 mg/kg. PAHs adsorb to soil particles suggesting that the reported PAH concentrations should not pose substantial threats to human health via likely routes of exposure. More acute effects such as photosensitization or irritation, associated with direct contact with high concentrations of PAHs, also would not be expected in this case.

Low levels of PCB 1260 were reported in both leachate samples at concentrations of 0.61 and 0.33 mg/kg. PCBs are persistent, highly bioaccumulative, and potentially carcinogenic chlorinated hydrocarbons. The reported PCB concentrations are well below the maximum soil concentration criterion set in the PCB regulations of 50,000 ug/kg (a "safe" level of PCBs in soil has not yet been determined). The extent of potential PCB contamination cannot be determined from available data. PCBs strongly bind to soil elements, thus reducing the concentration available for absorption should direct contact occur. The low concentrations of PCBs reported in current samples should not, therefore, pose substantial threats to human health via likely routes of exposure.


An aqueous sample of ponded water on the landfill site revealed no organic or inorganic contaminants at concentrations of concern.

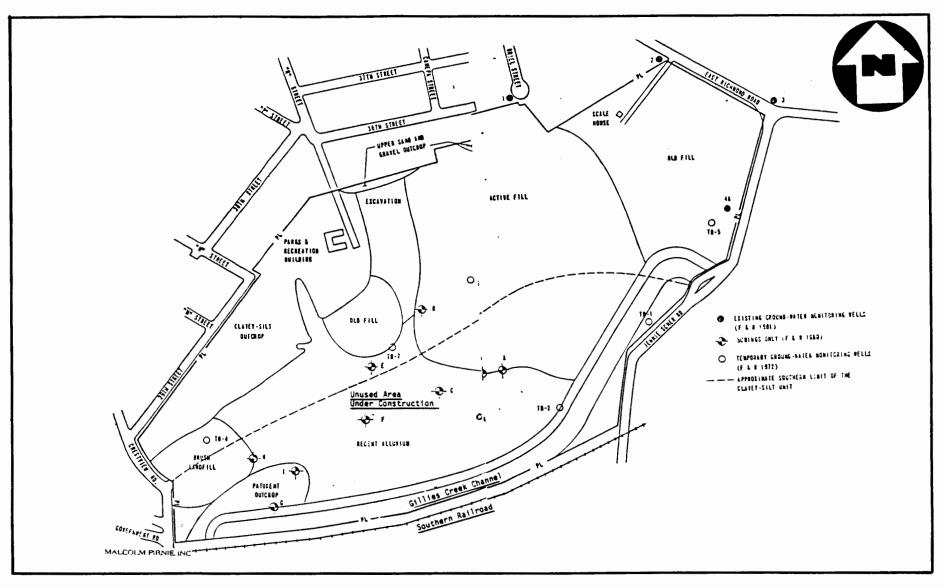
Elizabeth Quinn, Toxicologist

APPENDIX A

1. COST CENTER:				2. NO. :			
	REM/FIT ZONE CONTRACT						
ACCOUNT NO.:	TECHNICAL DIRECTIVE DOCUMENT (TDD)			F3-8305-38A			
				A9C-6303-36A			
3. PRIORITY:	4. ESTIMATE OF	5. EPA SITE ID:	6. COMPLETION DA	TE: 7. REFERENCE INFO.:			
	TECHNICAL HOURS: * 135 w/o/ HRS						
☐ HIGH	* 155 with HRS	VA-124		YES NO			
X MEDIUM	4A. ESTIMATE OF	5A. EPA SITE NAME:		ATTACHED			
Low	SUBCONTRACT COST:	East Richmond Roa	d	☐ PICK UP			
			3 wks after C	1 —			
			JWKS after t	Sec Nos I.M.			
8. GENERAL TASK DESCRIPTION: Conduct a Site Inspection and HRS as necessary.							
8. GENERAL TASK DESCH	IPTION:						
1							
1							
	·			10 1075010			
9. SPECIFIC ELEMENTS:				10. INTERIM DEADLINES:			
1.) Review P.A. prepared by NUS FIT III.							
2.) Prepare a sampling plan and submit to EPA for approval.							
3.) Coordinate site activities with State.							
4.) Conduct on-site sampling and inspection and off-site sampling as appropriate.							
5.) Coordinate Lab needs thru VIAR.							
6.) Follow chain of custody.							
7.) Submit formal report.							
11. DESIRED REPORT FORM: FORMAL REPORT LETTER REPORT FORMAL BRIEFING							
OTHER (SPECIFY): If no HRS- 135 hours.							
12 COMMENTS:							
12. COMMENTS:							
All mondment and to dedictional notice required to the contract for Educator, analysis.							
13. AUTHORIZING RPO: // // // // // // // // // // // // //							
	Marold G. Byll 2/04/84						
(SIGNATURE)							
15. RECEIVED BY: MACCEPTED ACCEPTED WITH EXCEPTIONS REJECTED 16. DATE:							
2/2/							
(CONTRACTOR RPM SIGNATURE)							

APPENDIX B

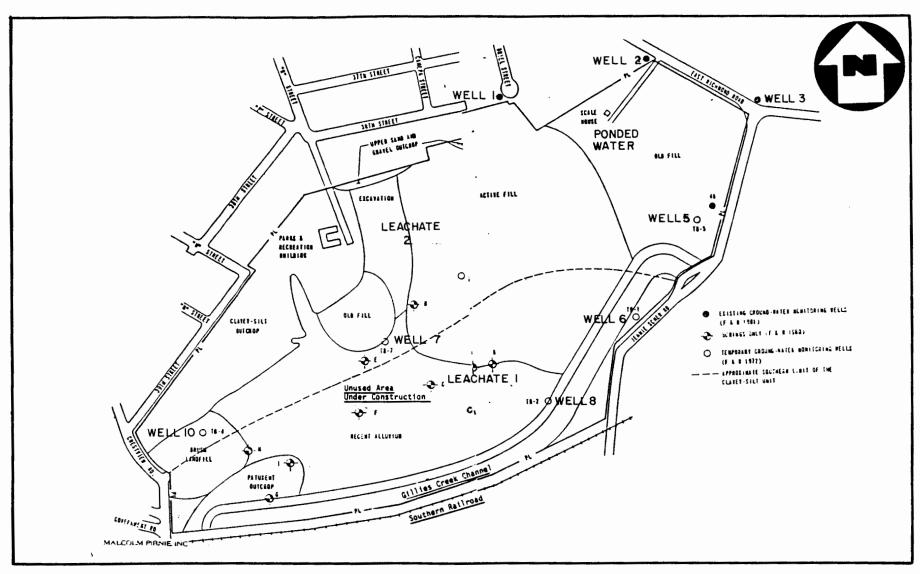
SOURCE: USGS RICHMOND VA. QUAD. (7.5 MINUTE SERIES)


SITE LOCATION MAP

EAST RICHMOND RD. LANDFILL, RICHMOND, VA.

SCALE 1:24000

FIGURE I


SITE SKETCH

EAST RICHMOND RD. LANDFILL, RICHMOND, VA.

(NO SCALE)

FIGURE 2

SAMPLE LOCATION MAP

EAST RICHMOND RD. LANDFILL, RICHMOND, VA.

(NO SCALE)

APPENDIX C

PROJECT NAME: EAST RICHMOND ROAD TOD NO: F3-8305-38

EPA SITE NO.:	VA - 12-4
REGION:	,III

QUALITY ASSURANCE REVIEW OF ORGANIC ANALYSIS LAB DATA PACKAGE

ORIGINAL (Red)

Case No.: 1794	Ap	Applicable Sample No's .: C-3232 through And						
Contract No.:			3238, C-3240,	Λ				
Contract Laboratory: ERG (As Su		· · · · · · · · · · · · · · · · · · ·	45and C - 3246	,	,			
Applicable IFB No.: Not Applica		,						
Reviewer: Atwood F. DAVIS								
Review Date: 4-28-84				***				
The organic analytical data for summarized in the following tab		en reviewed.	The quality assura	nce evaluat	ion is			
Reviewer's Evaluation*		Fractio	on n					
			BASE/	PCB/				
	VOLATILES	ACIDS	NEUTRALS	PEST.	TCDD			
Acceptable								
Acceptable with exception(s)	12,3	V4,5	V 2,4,5,6	V4,5,7				
Questionable								
Unacceptable								
* Definitions of the evaluation s	score categories	are listed on n	ext page.					
This evaluation was based upon	an analysis of the	review items	indicated below:					
● DATA COMPLETENESS		• TARG	GET COMPOUND N	MATCHING	QUALITY			
 BLANK ANALYSIS RESUL 	LTS	TENTATIVELY IDENTIFIED COMPOUNDS						
 SURROGATE SPIKE RESU 	JLTS	O CHROMATOGRAPHIC SENSITIVITY CHECKS						
MATRIX SPIKE RESULTS		OFTPP AND BFB SPECTRUM TUNE RESULTS						
DUPLICATE ANALYSIS R	RESULTS	STAN	IDARDS					
EVALUATION OF CONFID	RMATIONS	O CALIBRATION CHECK STANDARDS						
■ QUANTITATIVE CALCUL	ATIONS	O INTE	RNAL STANDARDS	S PERFORM	MANCE			
Data review forms are atta	ched for each of	the review ite	ms indicated above	·•				
≠ No errors noted, no form at	tached.							
Spot Check performed.								
Comments: [1] See INTERNAL C	onkespontence	C-585-6	-3-24 Re: Sui	BCONTRACT R	equirement:			
			. אום					
[1] See blank and								
[3] See Surrogak Sp	ike recoveri							
[4] See MATRIX Spike	recovenes.							
[5] See MATRIX Spike Recovenies. [5] See quantitative calculations								
[6] see duplicate ANACHSI	s nesults							
[7] See Evaluation of GO		e and con	MMENTS.					

- ACCEPTABLE: Data is within established control limits, or the data which is outside established control limits does not affect the validity of the analytical results.
- ACCEPTABLE WITH EXCEPTION(S): Data is not completely within established control limits. The deficiences are identified and specific data is still valid, given certain qualifications which are listed below.
- QUESTIONABLE: Data is not within established control limits.

 The deficiences bring the validity of the entire data set into question. However, the data validity is neither proved nor disproved by the available information.
- <u>UNACCEPTABLE</u>: Data is not within established control limits.

 The deficiences imply the results are not meaningful.

DAT	Α Π			T	T		Γ	Γ	<u> </u>				
COMPLET	1	LOJAQ-									>	Lasa	
	TRAFFIC REPORT # C	3232		2224	2235	3236	2237	3228	2240	221/1			3245
FRACTION	LAB I.D. # 909	18	21	22	23	24	25	26	27	28			_
BNA :	F.3						~ ,	20	5	~ 0	\$35	30	-33
GRA .												Red)	
ļ	TARGET COMPOUND TAB.	V-											
	TARGET COMPOUND D.L.	V -											
}	TENT. I.D. COMPOUND TAB.	\\ \rightarrow \\ -											
	SURROGATE RECOVERY	V-											
	CALCULATION VOLUMES	<u> </u>											
	GC/MS CHROMATOGRAMS	\ <u>\</u>											
	TARGET CMPD. QUAN. LIST	\ <u> -</u>											
	TARGET CMPD. SPECTRA	<u> </u>											
	TENT. I.D. CMPD. Q.L.	/-											
i . i	TENT, CMPD.LIB. SRCH.	V-											
	CHRO./SENS. CHECKS	MS-											
	BFB OFTPP TUNE DATA	160:06	130:15	1:45	18:15	1711:35							>
1	STD. CHROMATOGRAMS	MS-											
	STD_ QUAN. LIST	MS-											
	•												
	SAMPLE/FIELD BLANK										V		
	METHOD/INSTR. BLANK	141										142	
	LAB DUPLICATE	V19										131	
	FIELD DUP/REP												
	MAT. SPK./M. STD.	Vw										132	
PEST. :	PESTICIDE TABULATION	/ -											~
	PEST. D.L. TABULATION	V-											>
	PESTICIDE CHRO.	/ -											→
	PESTICIDE STD. CHRO.	V -											>
	CALCULATION VOLUMES	V -											→
	2 nd COLUMN CONF.	/ -											^
	GC/MS CONFIRMATION	NA-											↑
	PESTICIDE DUPLICATE	V										V	
	PESTICIDE SPIKE	V										V	
	PESTICIDE BLANK										V		
TCDD	TCDD TABULATION	V-											>
	TCDD DETECTION LIMIT	V -										-	>
	TCDD CHRO. / E.I.C.P.	72										1	>
	TCDD BLANK												

st

3.

	Titles Collection	120/11X	<u> </u>		 							20/207		_
RACTION	TRAFFIC REPORT # C	3232	3233		3235	3236		3238	3240	3241	3242	3244	3245	4
WAS TION	LAB I.D. # 909	18	21	22	23	24	25	26	27	28	29	30	33	34
VOA !	RUN DATE/TIME []											ed)		Γ
	TARGET COMPOUND TAB.	V -												M
	TARGET COMPOUND D.L.	V-												7
1	TENT. I.D. COMPOUND TAB.	V -							-					
I	SURROGATE RECOVERY	V -											-	
ł	CALCULATION VOLUMES	/ -												
	GC/MS CHROMATOGRAMS	/ -												
	TARGET CMPD. QUAN. LIST	✓ -												W
1	TARGET CMPD. SPECTRA	 												V
1	TENT. I.D. CMPD. Q.L.	V-												IV
-	TENT. CMPD.LIB. SRCH.	V-											<u> </u>	≻
	CHRO./SENS, CHECKS	NA-												W
Ī	BFB DFTPP TUNE DATA	1112:00	0:33	16:30	3:40	13 _{20:30}	9:20-							>
[STD. CHROMATOGRAMS	V -									<u> </u>	<u> </u>		Þ
1	STD. QUAN. LIST	V -												L
}							· ·						<u> </u>	\perp
1														\perp
		 										ļ		\perp
.														\perp
	SAMPLE/FIELD BLANK											-		
-	METHOD/INSTR. BLANK	1111								-		1:12	-	V
		V41										121		\vdash
	LAB DUPLICATE	19									 	√31		\vdash
	FIELD DUP/REP	/02							-		 	V32		
	MAI. SPR./ M. SID.	1/20								<u> </u>		A.25		
(COMMENTS: [1] See	RNI	N CH	troni	CLE I	vext	PAG	- C.						
-														
•							_							,
-											_			
-						W. *								,
-										•				•
														,
-														
-														
				· · · · · · · · · · · · · · · · · · ·							-			•

DATA COMPLETENESS

CONC./MATRIX

LO/AQ-

KEY TO DATA COMPLETENESS FORM

Abbreviation Used on Form Description of Checklist Item Concentration category submitted in analysis request (low, med, hi); and matrix (sol., aq.) Conc./Matrix Fraction Fill in acid, base/neutral, acid/base/neutral, or volatiles analysis Instrument run date (to be used for correlating calibration) Run Date/Time Tabulated results for target compounds Target Cmpd. Tab. Detection limits for target compounds (actual/level indicated by screen Target Cmpd. D.L. Tabulated results for tentatively identified compounds Tent. I.D. Cmpd. Tab. Surrogate recoveries results Surr. Rec. Tabulated GC screen results indicating required level of followup GC Screen Tab. GC/MS Chromatograms Chromatograms of GC/MS analysis runs Target compounds quantitation list, showing areas, ret. times Target Cmpd. Quan. List Enhanced and unenhanced spectra of target compound hits Target Cmpd. Spectra Quantitation list for tentatively identified compounds Tent. I.D. Cmpd. Q.L. Spectra and library match spectra of tentatively identified compounds Tent. Cmpd. Lib. Srch. Chro./Sens. Checks EICP's and R.R.F.'s for chromatographic sensitivity checks Spectra intensity lists, and criteria comparison forms for BFB, DFTPP BFB/DFTPP Tune Data Internal standards area control charts and description of remedial action I.S. Areas Charts Internal standards relative response listings for each sample run I.S. Rel. Resp. Form Tabulated response factors and amount injected for all cmpds. in calibration check RF and amts.: Calib. Chk. Tabulated response factors and amount injected for all cmpds. in 3-point calibration RF and amts.: 3-Pt. Calib. Chromatograms: Calib. Chk. Chromatograms for calibration check standard Chromatograms: 3-Pt. Calib. Chromatograms for 3-point multilevel calibration standards. Linearity: 3-Pt. Calib. Tabulated correlation coefficient or relative standard deviation for calibration RF Comparison Tabulated comparison of calibration Response Factor with check standard Sample/Field Blank Equipment rinse or reagent water blank shipped with samples from field Method/Instr. Blank Method or instrument blank which is prepared at lab Lab Duplicate Sample which was split by lab for duplicate analysis Field Dup/Rep Sample which was split or collected twice in the field Mat. Spk./M. Std. Matrix spike or method standard (blind, or done by lab) Pest. Tab. Tabulated results for pesticides Pest. D.L. Tab. Tabulated detection limits for pesticides Pest. Chro. Chromatograms for pesticide screening 2nd Col. Conf. Confirmation of pesticide results by using a second GC column and temperature GC/MS Conf. Confirmation of pesticide results by GC/MS analysis Pest. Dup., Spk. Blk. Pesticide duplicate, spike, and blank Pest. Std. Chro. Chromatogram of pesticide standard Pest. Std. LD. Pesticide standard identification form

2,3,7,8-tetrachlorodiben zodioxin

TCDD

TCDD Tab., D.L., EICP, Blk.

KEY TO SYMBOLS USED IN DATA COMPLETENESS TABLE

Symbol	Meaning	Symbol	Meaning
✓	Dataitem present	I	Incomplete data item
NA	Data item not applicable or not required	NC	Data item not clearly explained
P	Data item within established control limits		(units of conc., etc)
F	Data item outside established control limits	* or [number]	See footnote
MS	Missing item	XX/XX/XX XX:XX	Date/Time of run (calibration, etc.)

TCDD tabulated results, detection limits, extracted ion current profile, blank

RUN CHRONICLE

	RUN CHRONICLE										
	FRAC	TION: VOA		FRACTION:				FRACTION: BNA (Res			
	RUN ORDER	RUN ID/ DESCRIPTION	DATE TIME	RUN ORDER	RUN ID/ DESCRIPTION	DATE TIME	RUN ORDER	RUN ID/ DESCRIPTIO	N	DATE TIME	
	2	VPP(STD) GIIB	6/11 12:45	K	BFB	6111 12:00		C 3232	18	0/16/0:51	
	3	VBLR GID	6/11 13:30					BFB		0:06	
	4	C3232 18	6/11/15:25					C3232-D	19	6/16 9:25	
	5	C-3232-D19	6/11/6:20					C3232-MS	20	6/16/11:10	
7	6	C-3231-MS 20	6/11/19:05					C-3233	21	6/16/12:30	
	7	VBLK)611E	6/11 19:53					C-3234	22	6/16/13:55	
	8	C-3233 21	6/11/20:40		DFTPP	6/11 8:15		C-3235	23	6/11/5:05	
	9	C3234 22	6/11/21:30					C-3236	24	6/11 16:00	
	10	C-3235 23	6/11 22:20					C-3237	25	6/11/17:20	
	U	CPRSTD611C	611 23:10					C-3238	26	6/11/18:20	
	13	(MBLK) 41	6/12 3.30	12	6FB	6/12 0:33		C-3240	27	6/11/9:15	
	14	910-24 another Pros	6/13-4:40					C-3241		(d11/20:10	
	15	C-3238 26	6/12 5:30					C-3242		d11 21:05	
	16	VPPETD 612A	6/12/6:15					C-3244	30	(d11 22:00	
		VBL13612 B	6/127.15		DFTPP	6/12	->	C-3244 D	31	6/12/55	
	18	(3236 24	4128:06					C-3244 MS	32	6/12/50	
	19	C-3237 25	6/12/59					C-3245	33	612 5:45	
	20	C-324D 27	6/12/05					C-3246		6/12 8:40	
	21	VBLK 612C	6/12/0:05					M-BLK AR	41	6/12 9:40	
	22		6/12/11:45					M-BLKSED	42	G12 10:35	
	23	C-3242 29	6/12:30								
	26	VPP(STD) 613 B	6139:00	~24	BFB	6112					
	27	MBLK 42	6/13/0:00	25	BFB	6 3 8:40					
	28	C3244MS 32	6/13/11:10								
	29	VBLW 613C	6/13/12:05								
	30	C-3245 33	6/13/2:55								
	31	VBLK)613D	6/13:20								
	32	C-3246 34	6/13/14:25	∠ 33	BFB	6/13 20:30					
	35	MPPS+D614 E	6/14 8:35	* 34	BFB	414 9:20					
1		C-3244 30	6/14/0.05								
	37	C-3244D 31	614 30								

BLK? Y

FRACTION	TYPE CONC MATRIX	SAMPLE #	SOURCE OF H20	S FOR TARGET COMPOUNDS Plot 2 CONTAMINANTS (CONCENTRATION / DETECTION LIMIT)
VOA	FIRLD		HALC	Methylene Chloride (.053 Mg/L/) Chloroform (.003 mg/4)
	LO/AQ	C-3242		ORIGINAL
		909-29		(Red)
VOA	METHOD BLANK		ERG	Methodene Chloride (.003mg/4)
VOIT	Lo/AQ	909-41	L100	the lad King Change Company
	LOTITO			
				Maril 6 City 1 Co.
VOA	LAB BLANK	6110	ERG	Methylene Chloride 618 mg/L/)1 1,3-dichloro penzene (.002 mg/L/)1
	LO/AQ	[3]		1,4-dichlaw benzene (001 mg/L/)1
		ļ		1,2-dichlorobenzean (002 mg/c/)1
VDA	LAB BLK	GIIE	ERG	None Reported (many crossed of Q.L)
, -		-		J
	LO/AQ	[3]		
VOA	LAB BLK	612 B	ERG	Methylene Chloride (.024 mg/L/)1
	_			
	LO/AR	[3]		
	100 0 1/ 1 100	(12 C	ERG	
VOA VOA	LAB BLK LO/AQ METHOB BLANK	į	ERG	Methylene Chloride (.005 mg/L/)1 Methylene Chloride (.014 mg/L/)1
		909-42	2/26	Acaylonitaile (007myll)
	LOIAQ	[3]		trichlowethere oping/4/)1
1.00		(12.6		Tolueve (.001 mg/L/)1
VOA	LAB BLK LO/AD	613 C 614C	ERG [3]	CH2CLZ(08), i,1; Heichlowethane (.OD), TCE (.ODZ), Benz (ODI), Tol (.OD
VUH	LO/AQ	6190	ERG	None Found
VOA	FIELD	C-3244	HPLC	Methylenz Chloride (.040mg/L/)1
	,	90934		Trichloroethylene (004mg/L/)1
	LOJSOL	404.24		Benzene (.028 mg/L /) 1
		ļ		Tetrachlonoethere (.002mg/L/)
				Tolueve (.015 mg/L/)/
				[1,2-Dichlorobenzene (.001 mg/L/)] Ethylbenzene (.001 mg/L/)
				THISTOCKEDE (1001 Majte)
				WITH THE SAMPLE DATA IN A TABULATION FORM WITHIN TH
		MARY. TENT	ATIVELY IDENTIFE	ED COMPOUNDS IN BLANKS ARE LISTED ON A SEPARATE FO
COMMEN				
	SULT REPORTED BY L			
(2) RE	SULT INFERRED FRO	M QUANTITA	TION LIST, DIAGN	OSTICS, CHROMATOGRAM AND/OR SPECTRA.
(3)B	lank RUN After o	strindard o	a spike, the	exertone NOT used to QUELTION SAMPLES EXCEPT
4	nose cup immed	iptely After	in the blank	(1x eule).
		,		BUST FOUND IN PRECEDING BLANK.
			<i>d</i>	fer Buc & Sample, matching quality good, trans-1, 2-dichloro
222		1	·	, , , , , , , , , , , , , , , , , , , ,
<u> </u>			• •	ζ,
	ethene @ .03 ru	ed also f	on some reason	NO ghosting after LBLANK, SPECTRA QUAL. GOOD.

BLANK ANALYSIS RESULTS FOR TARGET COMPOUNDS P2-42 FRACTION TYPE CONC MATRIX SAMPLE # SOURCE OF H2O CONTAMINANTS (CONCENTRATION / DETECTION LIMIT.) Phenol (.003 mail / .01)2 BNA 909-41 ERG LAB (Red) Diethulphthalate (.002mg/L/.01)2 LO/AQ Dibutil phthalate (.003 ma/L/.01 Bis (2-ethyl hexyl phth glate (.023 mg/L/.01)1 BNA FIELD Bis (2-eily/lexil) phothalare (.019 mill/.01)1 HPLC 909-29 Dibutalonthalate (.002 mg/L/.01)1 LO/AQ Buted benzul phith MAK (. 002 mg/L/.01)1 C-3242 Phenol (.003 mall /010) 2 Dietholohthalate 7.020 males (01)1 LAB BNA 909-42 ERG Dibutalonthalate (-014 mater / 1 LO/SOL Dis (2-ethylhenyl) of the At (.27 malkey).1 Phenol (.017 malka (.1) 1 0-3246 BNA FIELD HPLC Bis (2-ethelhexil) of the After (-24 malke/-1)1 Dibutulonthalak (.027 malks/1) 929-34 LO/SOL Dietholommainte (.06) majua /.1 M-BLANKS LAB REPORTED OF-DDE PEST ERG 909-41 LO/AQ & W/SOL NO QUANTITATION SUpplied 909-42 P.P-DD= (.027 mg/L LAB REPORTED O.P. DDE NO QUAMITATION HPLC NONE FOUND PEST LAB 909-29 LO/AQ C-3242 HPLC 4,4'-DOE (-002 malky /.002) PEST LAB 909-34 L0/500 C-3246

LABORATORY REPORTED FIELD BLANK DATA IS COMPARED WITH THE SAMPLE DATA IN A TABULATION FORM WITHIN THE SAMPLE ANALYTICAL DATA SUMMARY, TENTATIVELY IDENTIFIED COMPOUNDS IN BLANKS ARE LISTED ON A SEPARATE FOR COMMENTS:

(1) RESULT REPORTED BY LABORATORY AND CONFIRMED BY REVIEWER.	
(2) RESULT INFERRED FROM QUANTITATION LIST, DIAGNOSTICS, CHROMATOGRAM	

Surr	rogate bound name	D. Jeuzel		P3-2,4-DICHLORD Phenol	D-AWLINE	Dio-Biphony (Methoxychlox							
Analy	tical Fraction:	VOA	VOA	ACID	BN	BN	PEST							
QC	water:	10-130	70-130	25-120	40-120	40-120	40-120							1
LIMI	• • • • •	70-130	76-130	1	1	1 (1 :							
Matrix	Sample no.	Ref. 2	Ref.3	Ref. 3	Ref.3	Ref.3	Ref.3	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	
INITIX	Jampie No.													
AQ	C-3232	92	96	140*	113	153 🗶	62			 	H		1	
1	C-3233	79	120			57	60				100			
	C-3234	53*			69	47	81			1	26.		ij	1
	C-3235	53*	59*	72	137米		.78				1			
	C-3236	99	94	37	135×	65	72				y K		i i]
	C-3237	98	95	78	126 *	63	80							
•	C-3238	95	91	72	102	52	84							
	C-3240		92	61	107	57	63		1		ğ		1	
	C-3241	197	193	108	134 *		72				7.	1	r. B	
V			1960	63	110	58	69				¥	1	;	ļ
SOL	C-3244	90	71	49	33 X	46	123 *		H	1	Ì		\$	Ì
	C-3245	116	105	115		49	88		R	1	}		<u> </u>	
Y	C-3246	103	90	1124*	136*	110	88		1	1	<u> </u>		<u> </u>	į
				1		1			1	<u> </u>	\$ 		<u> </u>	•
AQ	BLX GIID		100	1		{			<u> </u>	1	ų į		1	
AQ	C-3232-D	83	.88		107	94	49			ii	j 3			1
AQ	C-3132-MS	69:X	79	80	118	62	84		<u> </u>	-	ļ			
AQ			180						!		<u> </u>	ļ		
			97			163 🗶					<u> </u>	<u> </u>		
			93				12*		<u> </u>	ļ <u> </u>	<u> </u>	-	-	
	C-3244-MS		110			152*					<u> </u>	1		
SOL	C-3244-D	116	90	37	42	52	52			1	4			
			<u> </u>					ļ	9		1	 		
						!		-		!	4			ļ.
								 	<u> </u>		}	4		ċ
			!								3			•
							· ·	! 			}	-		
					·						1	1	·	ı
						1	7(31) 5		<u> </u>	1	1	<u> </u>		

Source of QC Limits: Ref. 1: IFB WA-83-0634, Am. 1
Ref. 2: Instructional Guide for Reviewing GC/MS Data, version (11/5/82).
COMMENTS: Ref. 3: Adopted for Review purposes

ASTERISKED VALUES NOT COMMENTED UPON WERE CONSIDERED NOT TO BE SIGNIFICANTY, OUT OF RANGE to QUESTION RESULTS.

Reported levels of VOA compaints into Amples C-3234, C-3235 may be 5 lightly higher than reported

LAB Blank, duplicate and spike samples were not used to question results if addition on other sample results were within range

VOA matrix spike AQUEOUS

QUANTITATION REPORT FILE: V90920MSPK

CLIENT :

NUS

Asterished values outside

of CONTROL RANGES

PROJECT NUMBER : 1080

CLIENT SAMPLE ID. : V90920MSPK MC-3232-MSPK

VOL., OR WT. OF SAMPLE, IN ULS OR MGS: 5000.000

VOLUME OF SURROGATE SPIKE USED, IN ULS : 0.999

VOL. OF MATRIX SPIKE USED, IN ULS :

5. 00€

See Comment Page AT END OF MATRIX Spike report sheets

SURROGATE SPIKE RECOVERY

COMPOUND	CONCENTRATION FOUND, MG/L	SPIKED CONC., MG/L	% RECOVERY
D6-BENZENE (SURR) PROMO-1-CHLOROPROPANE (SURR	0. 030	0. 043	69 %
	0. 024	0. 031	79 %

VOLATILE PRIORITY POLLUTANT SPIKE RECOVERY ADOPTED for review purposes

702117122 7712011277 702		HOOPIES "	(40-120 %)
COMPOUND	CONCENTRATION	SPIKED	% RECOVERY
	FOUND, MG/L	CONC., MG/L	
		2 242	1 1/47
CHLOROMETHANE	0. 000	0. 040	1 %* (CA7
BROMOMETHANE	0. 000	0. 040	
VINYL CHLORIDE	0. 000	0. 040	1 / 2
CHLOROETHANE	0. 000	0. 040	1 %
METHYLENE CHLORIDE	0. 030	0. 043	69 %
ACROLEIN (PROPENAL)	0. 169	0. 109	★154 %
TRICHLOROFLUOROMETHANE	0. 040	0. 046	87 %
1,1-DICHLOROETHYLENE	0. 044	0. 057	77 %
ACRYLONITRILE	0. 215	0. 158	★ 135 %
1-DICHLOROETHANE	0. 040	0. 052	77 %
NS-1, 2-DICHLOROETHYLENE	0. 044	0. 056	79 %
CHLOROFORM	0. 039	0. 051	77 %
1,2-DICHLOROETHANE	0. 044	0. 051	85 %
1, 1, 1-TRICHLOROETHANE	0. 055	0.060	91 %
CARBON TETRACHLORIDE	0. 038	0. 047	81 %
BROMODICHLOROMETHANE	0. 056	0.071	79 %
1,2-DICHLOROPROPANE	0. 038	0. 053	71 %
TRANS-1, 3-DICHLORO-1-PROPENE	0. 039	0. 052	75 %
TRICHLOROETHYLENE	0. 036	0. 055	66 %
BENZENE	0. 050	0.068	74 %
DBCM DIBROMOCHLOROMETHANE	0. 094	0.066	* 141 %
CIS-1,3-DICHLORO-1-PROPENE	0. 034	0. 048	72 %
1, 1, 2-TRICHLOROETHANE	0. 034	0.051	67 %
2-CHLOROETHYL VINYL ETHER	0. 000	0.066	0 % * H(
BROMOFORM	0. 058	0.068	85 %
TETRACHLORDETHENE	0. 046	0. 064	72 %
1, 1, 2, 2-TETRACHLOROETHANE	0. 045	0. 050	90 %
TOLUENE	0. 035	0. 050	70 %
CHLOROBENZENE	0. 040	0. 052	77 %
ETHYL BENZENE	0. 036	0. 048	74 %
1,3-DICHLOROBENZENE	0. 049	0. 067	73 %
1,4-DICHLOROBENZENE	0. 037	0. 051	72 %
1, 2-DICHLOROBENZENE	0. 040	0. 051	78 %
*	- · • · •		

VOA marin spike Solid

QUANTITATION REPORT FILE: V90932 ASTERISKED values outside of CONTROL RANGES

CLIENT :

NUS

Rod

PROJECT NUMBER :

1088

CLIENT SAMPLE ID. : V90932 MC-3244 MSFK

VOL., OR WT. OF SAMPLE, IN ULS OR MGS : 5429.990

VOLUME OF SURROGATE SPIKE USED, IN ULS : 0.999

VOL. OF MATRIX SPIKE USED, IN ULS :

5.000

See comment page AT END OF MATRIX Spike report sheets

SURROGATE SPIKE RECOVERY GENERAL RECOVERY RANGE ADDRED FOR
REVIEW PURPOSES (40-120%)

% RECOVERY CONCENTRATION SPIKED COMPOUND FOUND, MG/KG CONC., MG/KG 0. 039 0. 028 D6-BENZENE (SURR) 0. 044 110 % 2-BROMO-1-CHLOROPROPANE (SURR) 0.031 110 %

VOLATILE PRIORITY POLLUTANT SPIKE RECOVERY

COMPOUND	CONCENTRATION	SPIKED	% RECOVERY
<u> </u>	FOUND, MG/KG		MG/KG
			14-
CHLOROMETHANE	0. 000	0. 037	1 % *7
[™] BROMOMETHANE	0. 000	0. 037	1 2 X ([A]
VINYL CHLORIDE	0. 000	0. 037	1 1/4
"CHLOROETHANE	0. 000	0. 037	1 1/4
METHYLENE CHLORIDE	0. 971	0. 040	2420-*
ACROLEIN (PROPENAL)	0. 104	0. 101	102 %
*TRICHLOROFLUOROMETHANE	0. 042	0. 043	98 %
1,1-DICHLOROETHYLENE	0. 050	0. 053	94 %
ACRYLONITRILE	0. 122	0. 146	83 %
1 1-DICHLOROETHANE	0. 046	0. 048	95 %
NS-1, 2-DICHLOROETHYLENE	0. 050	0.051	97 %
CHLOROFORM	0. 047	0.047	99 %
1,2-DICHLOROETHANE	0. 046	0.047	96 %
1, 1, 1-TRICHLOROETHANE	0. 063	0. 055	114 %
CARBON TETRACHLORIDE	0. 049	0. 043	113 %
BROMODICHLOROMETHANE	0. 075	0.065	115 %
∝1,2-DICHLOROPROPANE	0. 055	0.049	111 %
TRANS-1,3-DICHLORO-1-PROPENE	0. 054	0.048	112 %
* TRICHLOROETHYLENE	0. 061	0. 051	120 %
" BENZENE	0. 067	0.063	106 %
DIBROMOCHLOROMETHANE	0.068	0.061	111 %
GIS-1,3-DICHLORO-1-PROPENE	0. 044	0. 044	99 %
1,1,2-TRICHLOROETHANE	0. 050	0. 047	107 %
2-CHLOROETHYL VINYL ETHER	0. 000	0.060	O 1/X LAJ
BROMOFORM	0.060	0.063	95 %
TETRACHLOROETHENE	0. 0 67	0. 059	113 %
,1,1,2,2-TETRACHLOROETHANE	0.041	0. 046	89 %
TOLUENE	0. 048	0. 046	103 %
« CHLOROBENZENE	0. 048	0. 047	101 %
ETHYL BENZENE	0.046	0. 044	104 %
1,3-DICHLOROBENZENE	0.050	0.061	81 %
1.4-DICHLOROBENZENE	0. 035	0. 047	75 %
1, 2-DICHLOROBENZENE	0. 038	0. 047	81 %

[A] LAR REPORTS NOT IN STANDARD

QUANTITATION REPORT

FILE: AB90920MSPK

BNA MATRIX SPIRE AR

Rod)

CLIENT : NUS

PROJECT NUMBER : 1088

ASTERISKED VALUES OUTSIDE OF

CONTROL RAMPE

CLIENT SAMPLE ID.: C3232 MSPK

AMBUNT OF SAMPLE EXTRACTED IN GMS OR MLS: 500.000
FINAL VOL. OF ACIDIC EXTRACT IN MLS: 0.500
ULS OF ACID EXTRACT INJECTED: 1.000
FINAL VOLUME OF BN EXTRACT IN MLS: 0.500

FINAL VOLUME OF BN EXTRACT IN MLS : ULS OF BN EXTRACT INJECTED :

1.000

ULS OF SURROGATE SPIKE USED :

100.000

ULS OF MATRIX SPIKE USED :

100.000

SEE COMMENTS PAGE AT END OF MATRIX Spike report sheets

SURROGATE SPIKE RECOVERY

COMPOUND	CONCENTRATION FOUND, MG/L	SPIKED CONC., MG/L	% RECOVERY
D3 2,4-DICHLOROPHENOL <surr></surr>	0. 085	0. 106	80 %
D5 ANILINE <surr></surr>	0. 243	0. 204	118 %
D10 BIPHENYL (SURR)	0.128	0. 204	62 %

SPIKE RECOVERIES FOR ACID AND BN EXTRACTABLES Purposes (40-120%)

COMPOUND	CONCENTRATION		% RECOVERY
•	FOUND, MG/L	CONC., MG/L	
2CPHE 2-CHLOROPHENOL PHENO PHENOL 2NPHE 2-NITROPHENOL 24DMP PHENOL, 2, 4-DIMETHYL-	0. 156	0. 216	72 %
PHEND PHENOL	0. 072	0. 212	34 %×
2NPHE 2-NITROPHENOL	0. 203	0. 206	98 %
24DMP PHENOL, 2, 4-DIMETHYL-	0. 145	0. 216	67 %
24DCP 2,4-DICHLOROPHENOL	0. 189	0. 204	92 %
34CMP P-CHLORO-M-CRESOL	0. 222	0. 212	104 %
246TC 2,4,6-TRICHLOROPHENOL	0. 215	0. 202	106 %
4NPHE 4-NITROPHENOL	0. 155	0. 208	74 %
M46DP 2-METHYL-4,6-DINITROPHE		0. 190	121 %*
PENTA PENTACHLOROPHENOL		0. 214	93 %
NNDMA METHANAMINE, N-METHYL-N-		0. 208	
B2CET BIS(2-CHLOROETHYL)ETHER	0. 163	0. 212	77 %
13DCB 1, 3-DICHLOROBENZENE	0. 107	0. 210	50 %
14DCB 1,4-DICHLOROBENZENE	0. 105	0. 202	52 %
12DCB 1, 2-DICHLOROBENZENE	0. 108	0. 202	53 %
BISCI PROPANE, 2, 2'-0XYBIS\2-C		0. 212	82 %
HXCET HEXACHLORGETHANE	0. 095	0. 204	46 %
NNDNP 1-PROPANAMINE, N-NITROSO		0. 216	106 %
NITBE NITROBENZENE	0. 207	0. 212	97 %
ISOPH ISOPHORONE	.0. 222		
BISCM BIS(2-CHLORETHOXY) METHA			
TCBNZ 1, 2, 4-TRICHLOROBENZENE	0. 161	0. 220	
NAPHT NAPHTHALENE	0. 174	0.210	
HCBUT HEXACHLOROBUTADIENE	0. 129	0.212	
C56 HEXACHLOROCYCLOPENTADIE	.NE 0.088	0.212	41 %
2CNAP 2-CHLORONAPHTHALENE	0. 166	0. 200	92 %
	0. 201	0. 204	98 %
DMPHT DIMETHYL PHTHALATE		0. 208	49 %
26DNT 2,6-DINITROTOLUENE		0. 208	109 %
ACENE ACENAPHTHENE	0. 199	0.212	94 %
24DNT 2, 4-DINITROTOLUENE FLUOR 9H-FLUORENE	0. 218	0. 216	101 %
FLOUR 9H-FLOURENE	0. 203	0. 202	100 %

iis iii	120PH	DIETHYL PHTHALATE HYDRAZINE, 1, 2-DIPHENYL- N-NITROSODIPHENYL AMINE	0. 147 0. 278 0. 120	0. 216 0. 208 0. 204	68 133 59	Z ORIGINAL
	BPPE	4-BROMOPHENYL PHENYL ETHER	0. 201	0. 220	71	% (Red)
9	HCB	BENZENE, HEXACHLORO-	0. 112	0. 200	56	%
	PHENT	PHENANTHRENE	0. 201	0. 208	96	%
eğ.	ANTHR	ANTHRACENE	0. 366	0. 210	173	* *
i	DNBP	DIBUTYL PHTHALATE	0. 1 9 7	0. 212	72	%
	FLUOT	FLUORANTHENE	0. 200	0. 208	96	%
Ý	PYREN	PYRENE	0. 202	0. 200	101	% . C.7
	BENZI	BENZIDINE	0. 014	0. 214	6	** [17
ď	BBP	BUTYL BENZYL PHTHALATE	0. 147	0. 212	69	%
asi	CHRYS	CHRYSENE	0. 209	0. 220	94	%
	BEN-A	BENZ\A\ANTHRACENE	0. 170	0. 200	85	%
*	33DCB	DICHLOROBENZIDINE, 3,3'-	0. 274	0. 440	62	%
	BEHP	BIS(2-ETHYLHEXYL)PHTHALATE	0. 232	0. 218	106	%
ii ii	DOP	DI-N-OCTYL PHTHALATE	0. 134	0. 208	64	%

THE DETECTION LIMIT IS 0.010 MG/L

C 3232 MSPK

QUANTITATION REPORT

FILE: AB90932MSPK

CLIENT : NUS

BNA MATRIX SPIKE SOLID Asterisked values outside of control RANGE

PROJECT NUMBER : 1088

CLIENT SAMPLE ID.: C3244 MSPK

AMOUNT OF SAMPLE EXTRACTED IN GMS OR MLS: 67.300
FINAL VOL. OF ACIDIC EXTRACT IN MLS: 0.500
ULS OF ACID EXTRACT INJECTED: 1.000
FINAL VOLUME OF BN EXTRACT IN MLS: 0.500
ULS OF BN EXTRACT INJECTED: 1.000

ULS OF SURROGATE SPIKE USED :

12DPH HYDRAZINE, 1, 2-DIPHENYL-

100. 000 1000. 000

ULS OF MATRIX SPIKE USED:

See Comments page AT END of matrix spike report sheets

SURROGATE SPIKE RECOVERY

COMPOUND	CONCENTRATION FOUND, MG/KG	SPIKED CONC., MG/KG	% RECOVERY
3 2,4-DICHLOROPHENOL <surr></surr>	1.148	0. 788	145 %
D5 ANILINE <surr></surr>	1. 274	1. 516	84 %
D10 BIPHENYL <surr></surr>	2. 311	1. 516	152 %

SPIKE RECOVERIES FOR ACID AND BN EXTRACTABLES

ADOPTED FOR REVIEW PURPOSES (40-120)

COMPOUND	CONCENT	TRATION	SPIKED	% RECOVERY
	FOUND,	MG/KG	CONC.,	MG/KG
2CPHE 2-CHLOROPHENOL	0	539	1. 605	33 % *
PHENO PHENOL		185	1. 575	
2NPHE 2-NITROPHENOL		106	1. 530	
24DMP PHENOL, 2, 4-DIMETHYL-		021	1. 605	/· / F:- 1
24DCP 2,4-DICHLOROPHENOL		072	1. 516	, , , , , , , , , , , , , , , , , , ,
34CMP P-CHLORO-M-CRESOL		060	1. 575	
'46TC 2, 4, 6-TRICHLOROPHENOL		684	1. 501	
NPHE 4-NITROPHENOL		659	1. 545	
PENTA PENTACHLOROPHENOL		388	1. 590	
NNDMA METHANAMINE, N-METHYL-N-N			1. 545	
B2CET BIS(2-CHLOROETHYL)ETHER		124	1.575	
13DCB 1,3-DICHLOROBENZENE	0.	681	1.560	43 %
14DCB 1,4-DICHLOROBENZENE	0.	673	1. 501	44 %
12DCB 1,2-DICHLOROBENZENE	0.	810	1. 501	
BISCI PROPANE, 2, 2'-0XYBIS\2-CH	ILORO 6.	518	1.575	413 % 🕏
HXCET HEXACHLORGETHANE	0.	442	1. 516	29 % * _
NNDNP 1-PROPANAMINE, N-NITROSO-	N-PR O.	153	1. 605	9 % * 7 [27
NITBE NITROBENZENE	0.	232	1. 5 75	14 % * 3 - 3
ISOPH ISOPHORONE	1.	388	1. 545	
TCBNZ 1,2,4-TRICHLOROBENZENE	1.	157	1. 634	70 %
NAPHT NAPHTHALENE	1.	362	1. 560	87 %
HCBUT HEXACHLOROBUTADIENE	1.	127	1. 575	
2CNAP 2-CHLORONAPHTHALENE	0.	124	1. 486	
ACENY ACENAPHTHYLENE	Ο.	065	1. 516	4 % * 5 L 2 J
DMPHT DIMETHYL PHTHALATE	٥.	191	1. 545	12 %米丿
26DNT 2,6-DINITROTOLUENE	1.	354	1. 545	87 %
ACENE ACENAPHTHENE	1.	609	1.575	102 %
24DNT 2,4-DINITROTOLUENE	1.	198	1. 605	74 %
FLUOR 9H-FLUORENE	1.	550	1. 501	103 %
CPPE 4-CHLOROPHENYL PHENYL ET	HER 1.	421	1. 575	
DEPHT DIETHYL PHTHALATE	1.	709	1. 605	106 %

							ORIGINAL
•	NNDPA	N-NITROSODIPHENYL AMINE	0. 891	1. 516	58	% ~	(Red)
	BPPE	4-BROMOPHENYL PHENYL ETHER	1. 763	1. 634	107	%	•
	HCB	BENZENE, HEXACHLORO-	0. 931	1. 486	62	7.	
	PHENT	PHENANTHRENE	2. 277	1. 545	147	1×	
	ANTHR	ANTHRACENE	2. 550	1. 560	163	7 ×	
	DNBP	DIBUTYL PHTHALATE	1. 864	1. 575	118	7.	
	FLUOT	FLUORANTHENE	1. 975	1. 545	127	% *	•
	PYREN	PYRENE	1. 916	1. 486	128	/ *	C.7
	BENZI	BENZIDINE	0. 014	1. 590	0	7. X	[1]
	CHRYS	CHRYSENE	1.825	1. 634	111	% ~~	
	BEN-A	BENZ\A\ANTHRACENE	2. 078	1. 486	139	1/ X	.
	BEHP	BIS(2-ETHYLHEXYL)PHTHALATE	0. 079	1.620	4	% * ∵	£2
	DOP	DI-N-OCTYL PHTHALATE	0. 038	1.545	2	11.	5.
	BEN-B	BENZO\B\FLUORANTHENE	0. 681	1. 382	49	%	

. THE DETECTION LIMIT IS 0.100 MG/KG

C-3244

PRSTICIZE

Asterisked values OUTSIDE OF CONTROL RANGES

Heptachlor Epoxide

Parameter

Heptachlor

Y BHC

Aldrin

p,p'-DDE

p,p'-DDD

p,p'-DDT

Dieldrin

Endrin

 α Endosulfan

β Endosulfan

Endrin Aldehyde

Endosulfan cyclic sulfate

Matrix Spike Recoveries

RANGE ADOPTED FOR REVIEW PURPOSES (40-120)

ORIGINAL AQ. 90920 (ug/L) Found % Found 0.46 0.83 55 55 0.46 0.83 0.83 52 0.43 0.83 76 0.63 3.2 2.9 90 75 1.2 1.6 19 * [3] 6.4 1.2

0.83

3.2

3.2

3.2

105

94

48

15米[3]

 1 Could not observe spike levels of pesticides due to high levels of PCB

0.87

3.0

0.46

1.5

with DDE

with DDT

ASTERISKED NATURES Which were NOT COMMENTED UPON WERE
NOT considered significant to question sample results.
[1] Detection limits for benzidenciu sample C-3232 may be slightly
higher than that reported, and in C-3244 signific Antly higher
12] Detection limits and for results, for 2,4-dimethylphenol, 2,4-
dichlorophenol, 2-NITROPHENOL, p-chloro-m-crusol, NITROBENZENE
N-NITHOST-N-PRAPHL-1-PROBANAMING 2-Chloro HAPTHALLING ACENAPTHYLENG.
N-NITHOSO-N-PROPYL-1-PROPANAMING 2-Chloro HAPTIMLENE, ACENAPTHYLENE, dimethyl phth Alate, bis (z-exh. Zhezyl) phthalate and di-N-octyl phthalate
may be slightly higher than whose reported for sample C-3244
[3] Detection limits for pp'-DDT and B-ENDOSULFAN may be
Slightly higher than those reported for Sample C-3232.
MARIA COMPANIE
1
·

NUS CORPORATION SUPERFUND DIVISION

DUPLICATE ANALYSIS RESults

PROJECT NOTES

Since duplicate ANALYSIS WAS performed ON UNSpiked SAMPLES
only surrogate spike compounds AND target compound hits (As designate
by the laboratory) were evalutated. RPD's were calculated only
For extreme values according to the following Criteria:
RPD Review Criteria: AQUEOUS BNAP 50% SOLID BNAP 60%
VOA 20% VOA 30%
$VOA 20\% \qquad VOA 30\%$ $EQUIVALENT RATIO CRITERIA: M = (2+N)$ $(2-N)$
(2-N)
RPD RATIO
50% 1.67
20% 1.22
60% 1.86
30% 1.35
The ABOVE CRITERIA WERE ADOPTED for REVIEW PURPOSES
THE FIDOUS CHAIRCON ACCOUNTS FOR THE PROPERTY OF THE PROPERTY

QUANTITATIVE CALCULATIONS

ORIGINAL

Duplicate Analysis was performed on unspiked samples therefore RPDs are only calculated on this sheet for surrogate spikes and target compound hits (as determined by the Analysis LAR)

	SAMPLE	70,	Dz	RPD	COMPOUND	Comments
<u>C</u>	-3232					All within criteria/Contaminan
<u>C</u>	-3244					All within Criteria/ That
						WERE NOT CONTAMINANTS
	J-3232.					All within criticity
(-3244	، ۵۵5	.029	77	ACCUMPTHENC	
_		.520	,247	72	BENZO(B) FLUORANTICHE	
_		.504	1.6604	107	BENZO (K) ELINGRAMMENC. BENZO (G.H.Z) PERNICHE	may differ slightly for Reported value
_		041	6113	94	BENZO (GHIT) PERYLENE	
		.312	.640	69	Chrusene	
		<.010	.049	132	DIBENZO(A,M) ANTHENCENE 114-dichlord Denzene INDERS (1,1,3,63)	pot Significant Due H
	/	.029	.055	62	114-dichloro benzene	
		£60,	.099	601	PHRENC	
_						
_						
_						
_						
_						
_		<u>.</u>				
_		1	+			
_						
_			 			
_						
_						
_						
_						
_						
_						
_						
_						
_			<u> </u>			

RPD'S NOT COmmented upon were not considered significant to

EVALUATION OF CONFIRMATIONS OF C ANALYSES

Plofz

SAMPLE NO.	COMPOUND	COLUM CONDI DETE OTHER DATA DATA DREL TIM	FROM CO COR CRET. ESINC	-54 cm 75F5-25 CD LUMN # RELA PEAK A	TIVE AREA TIOS	COLUM CONDI DE TEC OTHER DATA R D RET D REL TIM	ROM CO	P225 (1.95 GO IX LUMN # RELA PEAK RAT	2: TIVE AREA	GC/MS COLUM CONDIT DETEC OTHER DATA F	N: FIONS: TOR:	MS RUN(S)	SCAN DISCAN TIME	NO. OR RET. S IN AUGO	PEAK RA	ATIVE A TIOS DOON	TYPE OF CONFIRMATION (2 COL / GC/MS)	REVIEWER CONFIDENT
£3245	PCB 1260 R.T. reforme Park PCB Reaks		12.02 13.30 13.59 NF 14.19 14.48 14.66 14.83 15.19 15.30 15.76 16.48 16.73	21 53 20 75 35 18 33 23 28 28	163-02753623061021	Paci time for que House acce notea mata	a druft halitat, year, ga hand, hand number eny cl	lunm id to . Ve compresal if all cap. Tims prous rows r	Retention Much acrison. 1:1 peaks col: eserce ratches								26	Yes

COMMENTS: NF = Not found

B mutch is contribut based on cupillary columnmatch. See lab comments origination

EVALUATION OF CONFIRMATIONS OF C ANALYSES

R2-12

SAMPLE NO.	COMPOUND	COLUM CONDI DETE OTHER DATA SERET D'REL	FROM CO T. OR RET. ES IN:	75F5-2 ECD LUMN H RELA PEAK A	25766 FT: ATIVE AREA TIOS	COLUM CONDI DE TEC OTHER DATA R DRET DREL TIM	TIONS; CTOR; E R: FROM CO COR RET. ES IN!	572259/ 15 57246 190°Is: CD LUMN # RELA PEAK RAT	2: TIVE	DETEC OTHER DATA F	IN: TIONS: TOR: :: FROM GO	MS RUNG	S): OSCAN OREL. TIME	I NO. OR RET.	PE AK RA	ATIVE AREA TIOS	OF CONFIRMATION -/ GC/MS)	VER CONFIDENT
		Somo?	Stongorg	Somo?	Syongoro	Somos	Stongerg	Somos	Stongorg	Spectoum MATCHUM	LEVEL HOW	WHICHE	Somos	Stongorg	°/awos	Stongorg	TYPE (REVIEWER
C3244	PCB 126C1 R.T. reference parked PCB feaths L	11.99 13.36 13.83 14.16 14.45 14.67 14.90 15.17 15.29 15.46 NF 15.73 15.89	NF 14.19 14.48 14.66 14.83 NF 15.30	723394114899118-125	163-52973-3621-73018	Pac Colu Qual Moin acc. noted motes by r	tad of takes	tenties tenties compa meral of all cap of ms pres of beaution	h for 1:1 packs ence								Jc.	les-

COMMENTS: NF = Not found

PCB match is contident, Gased spon capillary column match. See lub comments on quantitation.

- 1. Peak matching RRT of DDT found in blanks, thus higher detection limit given.
- 2. Sample 90931 extract lost after primary analysis, confirmation could not be performed.
- 3. For all matrix spikes, recoveries of dieldrin and endosulfan cyclic sulfate are combined with DDE and DDT, respectively because of non separation.
- 4. Sample 90932 Could not observe spiked levels of pesticides due to high levels of PCB.
- 5. For samples 90930 and 90933, PCB 1260 was qualitatively confirmed only. Due to numerous sulfur treatments and low extract volumes, quantitation could not be accurately performed.
- 6. Detection limits of 0.01 ug/L in waters could not be achieved because of low sensitivity of detector. Final volumes of extracts were 0.5 ml. It was felt that concentrating to a lower volume to achieve better detection limits would have sacrificed accuracy in results.
- 7. Results for soil samples expressed as dry weight.

 C-3244 44-D C-3
- 8. Detection limits are higher for 90930, 31, and 33 due to positive levels of PCB's.

QUANTITATIVE CALCULATIONS

ORIGINAL (Red)

CALCULATION ERRORS AND CORRECTED RESULTS ARE LISTED BELOW:
BNA social sample detection limits Are reported to be . Olimple
however the actual detection limits are 10 times hishop, . Img/kg
Modern Extraction volumes were As to llows: 500 mls extractor
First conc. I'ml, volume injected 1.0 ul. Souis extracted, final conc. I'ml,
SOLID extracted volumes: 50 gras extracted, final cour. I'ml,
Volume injected Loul.
approximately 10 times more agreens sample was processed
than solid sample, get final volume & injected volume Straged
the same a . Olma / detection limit was reported for the agree
Samples, so without mather concernation on higher injected
volumes, the detection limit for SOLID SAMPLES MUIT be 10 41ms
higher.
A cost charle of annitod in the Cost of 2244 inchical
A Spot chech of reported values for C-3244 yearstied results were correctly calculated from sample weights
Side I according to the state weight
However All reported values < 1 mg/kg are considered
Approximate values.
THOUSE DATES!
·

TARGET COMPOUND MATCHING QUALITY

ORIGINAL (Red)

3.22

SAMPLE #	FRACTION	SCAN #(S) OB/EXP	M TYPE	SPEC ATCH ISCORE	TRUI	M ES SCORE	ESTIMATED COMPOUND COMMENTS CONCENTRATION NAME
3234	VOA /	134/142					trans-12-dizhionethere - must be
	(7					C15-130 man install
							The value for expected scan number w
		<u> </u>					calculated from the 1,1-dichloroethane
			 	 		 	abserved in the sample & standard.
			-	 		 	
		<u> </u>		 		ļ	instead of the internal standard as
						<u> </u>	scan 102 in the sample and 166 in the
			<u> </u>		!	ļ	standard. Also, Do Benzene was
		·				ļ	at 299 in sumple and 309 in standard
				·		<u> </u>	/
						T	
						1	
			-			<u> </u>	
		ļ — · · · · · · · · · · · · · · · · · ·	 		\vdash	 	
				-			
		-					
					ļ	 	
				<u> </u>			
		·					
				-		 	
			-				
				ļ		<u> </u>	
				L			
							·
		-					
						-	

PROJECT NAME: EAST KILL TOD NO: F3 - 8305	HMUND Rd.		EPA SITE N REGION:	10: <u>VA-124</u>			
		ITY ASSURANCE RIC ANALYTICAL DA					
Case No.: 1794			Applicable Sample No's	4 1			
Contract No.:	1 -		MC-0910 through And including MC-0 MC-0918, MC-0919, MC-0920, MC-1				
Contract Laboratory: ERG			,	•			
Applicable IFB No.: No. A			MC-0923 and MC-00	149			
Reviewer: Atwood F.							
Review Date: $\frac{4-27}{}$	89	 					
The inor ganic analytical data summarized in the following		has been reviewed.	The quality assurance e	evaluation is			
riewer's Evaluation*		Fraction					
	TASK I ICP or AA METALS	TASK II FURNACE AA METALS	TASK III COLD VAPOR AA MERCURY	TASK III CYANIDE			
Acceptable			/				
Acceptable with exception(s)	√ 3 ,5	V 3,4,5					
Questi ona ble							
Unacceptable							
* Definitions of the evaluati	on score cate	gories are listed on n	ext page.				
This evaluation was based up	on an analysis	s of the review items	indicated below:				
DATA COMPLETENES	S	EDO INITIAL CA	ALIBRATION VERIFICA	TION			
BLANK ANALYSIS RE	SULTS	[1] O CONTINUI	NG CALIBRATION VER	IFICATION			
■ MATRIX SPIKE RESUL	,TS	[1] INTERFER	ENCE QC RESULTS				
DUPLICATE ANALYSI	S RESULTS	O DETECTIO	N LIMITS RESULTS				
Ľ¹□O STANDARD ADDITION	NS RESULTS	[1]O INSTRUME	NT SENSITIVITY REPO	RTS			
UNANTITATIVE CALC	ULATIONS						
Data review forms are a		ach of the review ite	ms indicated above.				
No errors noted, no form	attached.						
Spot Check performed.							
Comments: [1] NOT REQU	LESTED IN	SUBCONTRACT RE	porting requiremen	270			
[2] See INTERNAL CORRE			Re: Subcontract &	equirements_			
included AT the b	Ack of o	Mis Appendix.		····			
[3] See blank analy	ISIS PRSUL	.75.					
[4] See MATRIX SPIK	e recover	ues.					

[5] See detection limit results

DATA EVALUATION SCORE CATEGORIES

ACCEPTABLE: Data is within established control limits, or the data which is outside established control limits does not affect the validity of the analytical results.

ACCEPTABLE WITH EXCEPTION(S): Data is not completely within established control limits. The deficiences are identified and specific data is still valid, given certain qualifications which are listed below.

QUESTIONABLE: Data is not within established control limits.

The deficiences bring the validity of the entire data set into question. However, the data validity is neither proved nor disproved by the available information.

<u>UNACCEPTABLE</u>: Data is not within established control limits.

The deficiences imply the results are not meaningful.

INORGANIC	DATA	COMPLET	ENESS	CHECKLIST

ORIGINAL (Red)

									=		* ***		(Red))
TRA	FFIC REPORT#	MC-0910	0911	0912	1913	0914	0915	0916	0918	0919	0920		0923	0924
MA	ITRIX (SOLAR)	AQ-			<u> </u>					<u> </u>	->	SOL	SOL	SOL
		L0-												>_
F-ELD_	BLANK								į		V	•		V
C	DUPLICATE					£								
- /-	SPIKE	. 49.	t Agent											
TijkI:	Rowdata	NA-												→
TijKI: ICAPORAĄ Matals	TAB_results	/-	7											<u> </u> >
ा _{वि} ष्याङ	TAB. D.L.	V -												>
	QA Form	V_[1]												->
91	ICAP Interference QC	NA-												>_
esi .	Instr. Sens.	NA-												<u> </u>
TFRKII:	Rawdata	NA-												 >
Tu or AA Meti /	TAB. results	/-			<u> </u>		<u> </u>							 >
	TAR D.L.'s	√ -							<u> </u>					 > _
÷	QA Form	V(I)									<u> </u>			>_
	Instrucens.	NA-												 >
F KII:	Raudata	NA -												->
Tescury	TAB. results	/ -												 >
Paculy	TAB. D.L.s	./ -												>
***	QA Form	V[i]												> `
-4	Instr. Sens.	NA-									<u> </u>			>
ΓH5KⅢ:	Rowdota	NA-										·		>
Cvanide	TAB. results	/												>_
	TAB. D.L?s	V -												>
	QA Form	V [1]	-											>
,	Instr. Sens.								-					>
Other :: (5 "ecify):	Raw data													
(: ecify):	TAB. results													
-vę	TAB. D.L.'5													
-1	QA Form													
1984	Instr. Sens.			,										
	Rowdata													
	TARresults													
	TAB. D.L.'s													
	QA Form													
.47	Instr. Sens.	·												
	FIT Source V	Result	ONL	-4										<u> </u>
- Chilott 3 . "	NA: NOT	APP	CABO	رويا	SOT	Recui	red i	N Si	rpcon	TRACT	· Regi	urem	ents	
•						7								

NOT required in subcontract requirements NA & NOT APPLICABLE,

Blank Analysis Results

The contaminants found in the blanks are listed below:

FRACTION	TYPE OF BLANK	SAMPLE NO.	SOURCE OF	CONTAMINANTS (concentration/DL)
ALL	FIELD LOJAQ	MC-0920	HPLC	AL (.04mg/L/02) Co (.004mg/L/.05) Co (.007mg/L/.05) Co (.007mg/L/.05) Ni (.01 mg/L/.04) ZN (.093 mg/L/.01) B(.img/L/.1) SN (.04 mg/L/.01) Cd (.006 mg/L/.001)
ALL	FIELD Lo/Sol	MC-0924 90934	HPLC	NONE FOUND 1
ALL	LAB LO/AR	90941 C3232 LAB BLK	ERG	Sb(.02 mg/L 1.02) 1 SN(.06 mg/L/.02) 1 Cd(.005 mg/L/.001) 1 Al(.02 mg/L/.2) 1 Co (.004 mg/L/.05) 1
ALC	LAB LO/SOL	90942 C3244 LAB BCK	ERG:	Ca (-011 mg/kg / .5)1
-				
COMMENTS: _	[1] Reporte	d by IAB	·	

MATRIX SPIKE RECOVERIES

Sample No.	MC-0910	MC-0922		
Field Spike				
Lab Spike	J			
Matrix	AQ	SOL		
Conc. Level		LO		
Method Std.				
Fraction	ALL	ALL		

All matrix spike recoveries were within the established control ranges specified in;

IFB WA8 -A , Exhibit E, Table 2. Yes No

_			/ ۱	
Exce	nti	On!		•
レハしし	باب	\sim	(J)	٠

Exception(2):							ı
Par am et er	Accepted Range (%)	Actual % Rec.	Sample Number	Org. Result	Spike Added	Spike Result	Units
CN	80-120	64	MC-0910	(10.) ŒN	.25		
Pb	75-125	12		.86	. 05		
Ag	80-120	68		.002	.05		
Ag Fe	80-120	132		380	.25		
<u> </u>	80-120	133		.7	1.00		
Cr	80-120	24	MC-0922	· 50	25		
[3] BA	80-120	NA		130	25		
· Co	80-120	132		7	25		
[1] Se	75-125	0		42	2		
B	80-120	124		7,1	6.72		
_54	75-125	130		58	62.5		
[1] Se	75-125	0	MC0910	<.01	.01		
[2] AL	80-120	6	MC-0922	12,000	6.25		
[2] Fe	80-120	0	MC0922	41,000	62.5		
[3] Ba	80-120	NA	MC-0910	1.8	1.0		

Se
Comments: [1] D.L's for All samples may be significantly higher than those reported
[2] Spiked with too low a concentration to see recoveries.
[3] Without tabulated spike results impossible to calculate To Recovery
The remaining uncommented recoveries were NoT considered significantly
out of RANGE to question sample results.

Duplicate Analysis Results

PLEASE SEE DUPLICATE WORKSHEET, NET, PAGE

The applicable duplicate pairs are:

sample no.	MC-0910			
Field duplicate				
Lab duplicate	V			
sample level	LO			
sample matrix	AQ	·		
Fraction	ALL			

The relative percent difference (RPD) for each parameter group was evaluated. The duplicate analysis RPD acceptance criteria should be:

,	max1mum accept	able
Fraction	Percent Differ	ence
ALL AQUEOUS	20%	NOT GETFORA
ALL SOLID	4000	Review Punfoses

The RPD's exceeding the maximum acceptable percent difference were:

			Comparison			
Fraction	Compound	Actual RPD	Sample	conc.	conc.	
I	VANADIUM	25 (1)	MC-0910	.7	.9	ugil
II II	TIN	21 [1]	MC-0910	.37	.30	11
I	ANTIMONY	200[2]	MC-0910	. 03	4.02	(1
	\					
						
						`

Comments:	[1] NOT	signific.	ANTLY OF	17 O€	PANY.	40	QUESTION	RUSULTS	
[2] NoT .									

NUS CORPOR SUPERFUND DI			ICATE 1	ANALYS		NKSHEF	PROJECT NOTES		
SAMPLE	M	<u>mg/L</u> C-0910	Lº/AA	MC	- 092	2 Lo/SOL			
	Dı	D2:	RPD	Di	D2	RPD			
Al	180	200	1	12000	13000	8			
Cr	.045	.052	14	49	50	2			
Ba	1.9	1.8	5	130	130	٥			
Be	.011	.011	0	ΝЪ	ND				
Co	.096	.10	4	7	٦	0			
Cu	.70	،٦١	1	63	88	33			
Fe	370	380	3	40000	42000	5			
Ni	.19	.20	5	13	15	14			
Mu	1.5	1.5	0	200	200	0			
ZN	:20	.20	0	440	380	i 5			
B	*8	.7	13	6.6	7.6	14			
	.7	,9	四25米	40	40	0			
Aq	.002	.002	0	2.7	2.2	20			
As	.045	.044	2	4.6	6.4	33			
Sb	• 0 3	2.02	1200×	ND	ND				
Se	ND	ND		ND	ND				
TI	. 15	.18	18	14	12	15			
Hg	.002	.0018	10	0.5	0.5	0			
Zh	.37	630	121*	64	51	23			
<u>Cd</u>	.020	.020	0	DN	ND				
Pb	.89	.84	6	200	190	5			
CN	ND	ND	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	αN	ND				
Comments: * Asterisked values outside OF CONTROL RANges									
[1] NOT SIGNIFICANTLY OUT OF RANGE to QUESTION RESULTS									
[2] NOT SIGNIFICANT DUE TO LOW SAMPLE CONCENTRATIONS									

Detection Limits Results

·										
		ere less								
pecified	in INTER	NAL CORRE	SENOS	ence 5	85-6-	3-21	<u>1</u> .	Yes_	No	
		(Reguned)						_		
Exce	otions: \underline{S}), 2x;	5; Pb	3(.5)	6X;	Ha ol	(.02),	$5x \cdot 5$	N 20(2) 10x;
Aqueous:	1.02 (.01),2x;	Ée	1(.05	120X :5N	,06 (.02);	3 x		
- 0		Repor	J. C CET	٠. ٠	. 71	mes Hi	ራዘ÷ቦ-	MAN RET	rined I	١٠٢.
	Key:	Pb 3		(,5)	. 6	χ		0		
	Co	Pb 3		Reg. D	ر					•
			•	·						
	·									
		T m.e		+ C		Dama				
		1113	crume	ent Sen	ועועונ	у керо	rts			
		vity repo				d fan	-11		. No	- Andia
is crumen	. sensiti	vity repo	orts v	were do	umen te	a for	aii pa	raneter	3: 100	1 WALIC
								Yes_	No	
		,								

INTERNAL CORRESPONDENCE C-585-6-3-24

TO:

Participant Bid Laboratories

DATE:

June 8, 1983

FROM:

Russell J. Sloboda, NUS Region III

COPIES:

SUBJECT:

Subcontract Requirements

This memorandum documents the specific information telephoned to several laboratories on June 8, 1983 regarding subcontract requirements.

Introduction

NUS Corporation, working for EPA on Superfund hazardous waste site investigations, intends to subcontract work for organic analysis of samples. Two sites will be involved in this subcontract. For both sites, water and soil samples will require volatile and acid/base/neutral GC/MS analyses, and also pesticide, PCB, and TCDD analyses. In addition, one site will also include analyses for specific metals and cyanide. Verbal bids on work must be telephoned by close of business on June 8, 1983. Written verification of all bids must be mailed by close of business on June 9, 1983. Laboratories must state in their bids if any of the requirements stated herein cannot be met.

Schedule of Work to be Performed

- Expected number of samples: The site requiring both organic and inorganic analysis is designated as Case 1794. For this site, the expected number of samples are 5 low concentration solid samples, 15 low concentration aqueous samples, and 5 medium concentration solid samples. (The medium concentration category indicates that these samples are expected to be above 10 ppm in one or more contaminants, based upon visual observation, air monitoring, and background information.) The site requiring only organic analysis is designated as Case 1797. For this site, the expectation is for 6 low concentration solid samples, and 8 low concentration aqueous samples. Actual number of samples could be somewhat different, since these estimates were derived from background information and may be modified during the actual site inspections.
- o Expected date of shipping: June 8, 1983. Samples will be shipped Federal Express. The laboratory will be notified by telephone when the samples are actually shipped, or if any changes in this timetable occur.
- Holding times before analysis: VOA's: five (5) days from sample receipt until analysis; A/B/N's and Pesticides: five (5) days until extraction. For cyanide, 14 days until distillation. For metals, holding times are not relevant since results are due first. Samples must be refridgerated prior to analysis. These guidelines are taken from standard superfund laboratory contracts.
- o Receipt of results: Complete results and documentation must be received within 30 days of sample receipt.

Required tests to be performed

VOA: 0

GC/MS analysis, method 624. Report priority pollutants plus 10 largest non-priority pollutant peaks of greatest apparent concentration but above 30 nanograms apparent (instrument) amount.

A/B/N:

GC/MS analysis, method 625 using fused silica capillary columns. Report priority pollutants plus 20 largest non-priority pollutant peaks of greatest apparent concentration but above 10 nanograms apparent (instrument) amount.

Pesticides/ PCB's/TCDD:

GC analysis using Electron Capture Detector. Use fused silica capillary columns, if possible. If levels are high enough, confirm by GC/MS. If levels are not high enough, positive results should consist of comparision with standards on two different GC columns. The following parameters should be analyzed for:

2,3,7,8 - TCDD

PCB aroclors 1016,1221,1232,1242,1248,1254,1260

aldrin 4,4'-DDE

endosulfan sulfate heptachlor epoxide

dieldrin 4,4'-DDD

α, β, 8,8-BHC toxaphene

zinc

chlordane endosulfan I endrin aldehyde 4,4'-DDT endosulfan II heptachlor

endrin

Metals:

Any approved analytical method may be used, provided that the required detection limits listed herein can The following metals are to be be achieved. analyzed for:

aluminum	•	chromium		sil ver	
antimony arsenic	boron cadmium	copper iron	manganese nickel	thallium tin	
barium	cobalt	mercury	selenium	vanadium	

Cyanide: 0

An approved method which meets the detection limits required in this subcontract must be used.

Paym ent

- Bids should be for total cost per sample; 4 separate prices for organic and inorganic analysis for solids and aqueous samples. One "sample" is defined to be all analytical fractions for any one of the following: a real sample, a blank, a matrix spike, or a duplicate. (The laboratory will be expected to perform one lab (method) blank, matrix spike, and duplicate on all analytical fractions, separately for each matrix, water or soil, and separately for each site. See Q.C. Section.)
- The laboratory will be paid the same (bid) price for all "samples", where a "sample" is defined above. However, payment will be limited to no more than one duplicate, blank, and matrix spike for each group of one to ten samples of the same matrix (solid/aqueous), within each case of samples from one site.

- one analysis is performed, the laboratory will still be reimbursed as if all analyses were performed. For example, if insufficient sample is present to perform an analysis, or if an accident occurs and insufficient sample remains to re-analyse the lost fraction, the laboratory will still be paid in full in order to cover the expenditure of time and effort and the fixed overhead, which is not covered in a separate fee under this subcontract.
- o The abovementioned statement regarding reimbursements for partial analyses does <u>not</u> apply to spikes, duplicates, or blanks: The laboratory will be paid only for the number of <u>complete</u> analyses for all fractions in the case of spikes or duplicates or laboratory blanks. For example, the laboratory will be paid for 2 laboratory blanks if 2 A/B/N, 2 pesticides, and 4 VOA laboratory blanks were analysed.

General QA/QC

- Chain of Custody must be followed. A form will be sent with the samples. All original forms must be returned with the results.
- o Leftover sample remaining after analyses have been completed must be saved for 60 days, in case further analysis is desired.
- o Extracts should be saved for 6 months, but do not have to be refridgerated. Magnetic tape data should be saved for two years.
- One matrix spike and duplicate must be performed on all fractions, for each matrix, water or soil. Spike with as many compounds as are currently in a stock mix and report all levels found.
- One laboratory (method) blank must be performed on all fractions, for each matrix, water or soil. Run one VOA blank before each case, after every spike or standard, or more often as needed. Report all VOA blank results (as well as results for all other organic and inorganic blanks).
- Homogenize solids carefully.

GC/MS QA/QC

- o Must meet EPA criteria for BFB and DFTPP, within previous 8 hours to all sample runs.
- o Calibrate with all priority pollutant compounds every 8 hours. Run approximately 50ng each (between 20 and 150ng). Should be able to see all compounds in standards.
- o If benzidine or 3,3'-dichlorobenzidine is available in current laboratory in-house standards, run a chromatography check every 8 hours using no more than 100ng of one of these compounds. Single ion chromatograms should be provided for the chromatography check runs.
- o The following minimum number of internal standards and surrogates must be used in every sample run:

Internal Standards
VOA's: 3
Acid/Base/Neutrals: 3
Pesticides: 1

Surrogate spikes VOA's: 2
Acids: 1
Base/Neutrals: 2
Pesticides: 1

- o Internal standards must be used for all relative retention time identifications, as well as for all quantitation.
- o Add approximately 100 ug (± 50ug) of each surrogate prior to extraction of acid/base/neutrals or pesticides. Higher levels may be used if matrix interferences are expected to cause problems in surrogate detection (due to extract dilution, concentration limitations, etc.).
- o Add approximately 100 ng of each surrogate prior to VOA analysis.

Metals Analysis QA/QC

- o Whenever spike recoveries indicate that sample results for a particular metal may not be accurate, a standard addition should be performed on all samples of the same matrix which have positive results for this element. It is left up to the professional judgement of the laboratory to determine the control limits for spike recoveries to be used as action levels for standard additions. Standard addition corrected results should be reported with a footnote that indicates this fact.
- o Run a calibration check standard after every 10 samples run on an instrument. Recalibrate if necessary, based upon laboratory control limits.

Detection Limits

- o Detection limits may be affected by matrix problems. For clean water samples, approximately 10ppb detection limits are expected for VOA's and acid/base neutrals, and 0.01ppb for pesticides analyzed by GC/EC. (It is understood that certain compounds, such as acrolein, acrylonitrile, 4-nitrophenol, benzidine, PCB's, and chlordane may have slightly higher detection limits.)
- o For inorganic analyses, required detection limits for soils should be no higher than 100 times the required limits for waters, which are listed below. (However, it is understood that occasional interferences may prevent these limits from being achieved in all cases.)

Element/Compound and Required Detection Limit in ug/l:

Licino	.11t/ OOI	ripodina d	ila ivedarica De		or Dittize	11. <u>~8/ -</u> 1		
		malka			malka			malka
aluminum	-200	To	cobal t	50	5 3	nickel	40	42, 7
antimony	. 20	2	chromium	10	1	sel eni um	2	02
arsenic	10	l	copper	50	5	sil ver	10	1
barium	100	i 0	iron	50	5	thallium	10	1
beryllium	5	,5	mercury	0.2	.02	tin	20	2
boron	100	10	lead	5	25_	vanadium	200	20
cadmium	1	١٠	manganese	15	1.5	zinc	10	•
						cyanide	10	(

- o The following amounts of sample should be extracted and/or analyzed if matrix problems are minimal:
 Waters: 1 L for A/B/N's or pesticides, 5-10ml for VOA's
 Solids: 25-50 grams for A/B/N's or pesticides, 5-10 grams for VOA's.
- o If it is not possible to meet these detection limits or to extract/analyze these amounts, an explanation should be documented in the results.

Documentation |

- o Results should be reported as follows: For each sample, list all compounds analyzed for, with either the amount detected, or the approximate detection limit next to each compound. Results should be reported in ug/l or mg/kg.
- For organic results, if less than detection limit values are found, report as such. (A footnote may be used to indicate that quantitations less than the detection limit may not be as accurate.) All positive results observed must be reported if greater than approximately 0.1 times detection limits. For inorganic analyses, reporting of results which are less than required detection limits is an option rather than a requirement.
- o Quantitations should be reported to two significant figures for priority pollutants, and to one significant figure for non-priority pollutant, tentatively identified compounds.
- o Include total ion chromatograms of each sample, spike, duplicate, blank, or standard normalized to the largest non-solvent peak. Label all peaks as internal standards, surrogate, or tentatively identified, using appropriate symbols.
- o Include automated quantitation lists printed by computer for all blanks, samples, spikes, duplicates, and standards. Indicate false positives and verified results on each quantitation list.
- o Include sample spectra of all priority pollutants seen in each sample.
- o Include sample spectra and spectra of the 3 best library matches for all non-priority pollutant, tentatively identified compounds in each sample. Utilize a purity search for library matching if this is possible.
- Report all surrogate recoveries and matrix spike recoveries, including amount added and recovered. If zero recoveries, check for a problem, and document the explanation in the results.
- o Report the extraction weight/volume, the final extract volume, and the injection volume for each sample, for each analytical fraction.
- o Provide BFB and DFTPP intensity lists and spectra for each run.

- o If high enough levels of pesticides are detected, provide spectra of all pesticides identified by GC/MS, as well as GC/EC chromatograms for sample and standard.
- When pesticides are detected at levels too low to be verified by GC/MS, provide chromatograms showing a comparison of sample with standards for two different GC columns. Pesticide compounds in both sample and standard chromatograms should be clearly labelled with compound names.

APPENDIX D

Site Name: East Richmond Road Red)
TDD No.: F3-8305-38

REFERENCE:

R. Stuart Royer and Associates, Inc. Report to City of Richmond, Department of Public Works, Dated October 21, 1981.

APPENDIX E

Pepart No.	X-1	982-6	•			•	•	t	DATE	June 26,	1972
Made for:	-		chmond								
Project:		111 A	reas - Eas								
Hole No.:	B-1		Total Depth: 5	0.0		-Top of Hole:			e Location		
Type of Bor	ing: H.	S. A	uger	Started	5/25/	72 c	ompleted	5/26/7	2 0	riller: Duty	
Elevation	o.5°	Cating Blows	CLA	SSIFICATI (D	ON OF I	MATERIA	LS	Sample Blows	% Core Recovery	Sheet 1	8p ržs
	3.c		Gray an Sand	nd Brown	Silty	Clayey	Fine	_	1.0	Water Da	sta: 3 Water @ 15.0
			Gray ar	nd Green	Silty	Sandy (lay	_	4.0 5.0	49° of (l 0 14.75° with Casing below Surface 0
	9.5		Gray C	oarse Cl	aven Si	and and		-	9.0 10.0	49' of Ground	l @ 20.67° with Casing Below Surface After for 30 Min.
	13.0		Gravel Green!		ray Fir	e to Co	parse of Cla	46	14.0 15.0	later Leve 41' of Below G	1 0 7.75° with Plastic Pipe round Surface movel of Auger
								61	19.0 20.0		
								32	24.0 25.0		
	-						100	/8	29.0 30.0		•
								100	34.0 35.0		
								76	39.0 40.0		

June 26, 1972 x-1982-6 DATE Report No. City of Richmond Made for: Landfill Areas - East Richmond Rd. Side Project: Elevation—Top of Hole: 39.88 Total Depth: 50.01 Hole No.: Hole Location: 5/26/72 Duty 5/25/72 H. S. Auger Completed Type of Boring: CLASSIFICATION OF MATERIALS % Core Sheet 2 MARKS Casing Blows Sample Blows Elevation (Description) Greenish and Gray Fine to Coarse Sand and Gravel with 44.0 Trace of Clay 100 45.0 49.0 50.0 49 50.0 Boring Terminated @ 50.01

FROEHLING & ROBERTSON, INC.

X-1982-6 June 26, 1972 Report No. DATE City of Richmond Made for: Landfill AReas - East Richmond Rd. Site Project: Total Depth: 50.01 Elevation—Top of Hole: 43.5 Hole Location: Hole No .: 5/25/72 Completed Duty Type of Boring: H. S. Auger Started 5/25/72 CLASSIFICATION OF MATERIALS Casing Blows % Core Sample Blows 3.5 0.8° (Description) Sheet **\$2.5** 1.0 14 Hill-Gray Silty Clay w/ Trace Sand & 1.0 Water Data: Brown Gilty Sandy Clay with Trace of Encountered Water & Gravel 4.0 **39.**5 4.0 17.01 5.0 47 Water Level @ 18.5' Brown Silty Sand, Gravel and River With 49' of Casing Rock 36.0 7.5 Below Ground Surface @ 0 Hours 9.0 Gray Fine Sandy Silt with Fine 10.0 Vater Level @ 21.3' 7 Gravel and Quartzite with 49' of Casing Below Ground Surface After Pumping for 30 Min. 14.0 15.0 42 Water Level @ 18.3' with 47.5' of Plastic Pipe Below Ground 26.5 17.0 Surface Upon Removal of Augers 19.0 Green Clayey Sand and Gravel 20.0 47. 24.0 25.0 35. 29.0 78 30.0 34.0 34.8 100/18

39.0

40.0

63

BORING LOG

June 26, 1972 X-1982-6 Report No. DATE City of Richmond Made for: Landfill Areas - East Richmond Rd. Site Project: Hole No.: Total Depth: 50.01 Elevation—Top of Hole: 43.5 Hole Location: 5/25/72 Duty Type of Boring: H. S. Auger 5/25/72 Completed Driller: CLASSIFICATION OF MATERIALS Sample Recovery Casing Blows Sheet 2 MARKS 40.0 (Description) Green Clayey Sand and Gravel 44.0 63 45.0 49.0 66 50.0 -6.5 50.0 Boring Terminated @ 50.0'

*No. of Blows 250-ib. Hammer, 30-in. Fall, Required to Drive Casing One Foot.

BORING LOG

June 26, 1972 X-1982-6 DATE Report No. City of Richmond Made for: Landfill Areas - East Richmond Rd. Site Project: Total Depth: 50.01 Elevation-Top of Hole: 8-4 Hole Location: Hole No.: Type of Boring: H. S. Auger Duty 5/26/72 5/26/72 Completed Driller: Started CLASSIFICATION OF MATERIALS % Core Recovery Sample Blows Sheet 1 of 2 Casing Slows 0.8"h E:evation (Description) 1.0 Brown Sandy Clay and Gravel Water Data: Encountered Water 8 4.0 27.0' 5.0 9 Water Level @ 45.25 with 49° of Casing Below Ground Surface 8.0 Hours 9.0 10.0 17 2.0 4.0 Brown Silty Medium Sand with 15.0 Trace of Clay 7.5 19.0 20.0 Hiocene Marl. Gray Sandy Silty Clay 24.0 25.0 27.0 **29.**0 Dark Gray Sandy Silt 30.0 34.0 35.0 17 89.0 **89.0** 48 40.0 Gray Clayey Silt with Gravel and

^{*}No. of Blows 250-lb, Hammer, 30-in, Fell, Required to Drive Casing One Foot.
**No. of Blows 140-lb, Hammer, 30-in, Fell, Required to Drive 2-in, O.D., 1.375 in I.D. Sample One Foot.

50-5R

BORING LOG

X-1982-6 DATE June 26, 1972 Report No. City of Richmond Made for: Landfill Areas - East Richmond Rd. Site Project: B-4 Total Depth: 50.0' Elevation—Top of Hole: Hole Location: Hole No.: Type of Boring: H. S. Auger Started 5/26/72 Completed 5/26/72 Duty CLASSIFICATION OF MATERIALS Sample % Core Blows Recovery Sheet ZEMARKS Casing Blows Elevation (Description) Fragments of Decayed Wood 42.0 Greenish Clayey Sand and Gravel 44.0 46 45.0 46.0 Greenish Silty Coarse Sand with Pea Gravel 49.0 42 50.0 Boring Terminated @ 50.01

*No. of Blows 250-lb. Hammer, 30-in. Fall, Required to Drive Casing One Foot.

BORING LOG

Report No	. X-	1982-	6	(DATE	June 26, 1972
Made for:			RIchmond			
Proiect:			I Areas - East Richmond Rd. Site			
Hole No.:	8-	5	Total Depth: 84.2 Elevation—Top of Hole: 45.4	Hole	Location	:
Type of Bo	oring: H.	S. A	uger Started 5/23/72 Completed	5/24/7	2 0	riller: Duty
Elevation 15.4	8.g.,	Casing Blows	(Description)	Sample Blows	% Core Recovery	Sheet TEMARKS
14.9	3.5	-	Brown Sandy Silt and Grave	- 5	1.0	
2.4	3.0		Brown Sandy Clay with Trace of Gravei			Water Data:
]		_	4.0	Water Encountered @ 12.01
	-	7	Brown and Gray Clayey Fine Sandy	15_	5.0	
		7	Silt			Vater Level @ 27.3'
8.4	7.0	╡ .		_ -		with 84' of Casing Below Ground Surface
	-	7				e O Hours.
	1 :	7	Gray Fine Sendy Silt with Trace	_	9.0	6 0 120131
		7	of Gravel and Boulders	17_	10.0	Water Level @ 23.3'
] :				ŀ	with 84' of Casing
	1. :	7				Below Ground Surface @ 16 Hours.
						e to nours.
					14.0	Water Level 8 23.7'
	_	=		63	15.0	with 73' of Plastic
		7				Pipe Belww Ground
		7		1		Surface Upon Removal
6.9	18.5	7				of Augers
		7		-	19.0	
	-	7	Gray and Green Clayey Sand and		20.0	
] ,	L	7	Grave !			
3.4	22.0	7		-		·
	-	7	Green Clavey Sand with Trace of	1		
		7	Gravel		24.0	
	-	7		34	25.0	•
			'	ı		_ #3
	1 .	3				
		_	·		ha a	•
•		\exists		-	29.0 30.0	
				40_	50.0	
		_				
	1 .	1				
		1			L	
				-	34.0 35.0	
	-	-		42	35.0	
,		\exists		l		
		=				
		3			20.0	
5.4	40.0	-		30	39.0 40.0	
۳۰۰	PU.U	٦		ρu	m.0	L

BORING LOG

						<i>''</i>			
Report No.		982-6						DATE	June 26, 1972
Made for:			Richmond						
Project:					chmond Rd.				
Hole No.:	B-5		Total Depth:			of Hole: 45.41		e Location:	
Type of Bo	ring: H.	S. Au	ger	Started	5/23/7	2 Completed	5/24/7	72 Dri	Her: Duty
5.41ion	48:3	Casing Biows	Cı		TION OF MAT (Description)	ERIALS	Sample Blows	% Core Recovery	Sheet Z of 3 Ks
5.4"	48°:8	Biows		Clayey S				44.0 45.0 49.0 50.0 54.0 55.0	Sheet Z'or'3"
	73.0	4					96	64.0 65.0 69.0 70.0	
28.5	73.0	_		Clayey Sa ayey Sili	and with Se	ams	30	74.0 75.0	
33.6 34.6	79.0 - 80.0 -	-	Gray a	and Green	Clayey Sa	nd	54	79.0 80.0	

BORING LOG

X-1982-6 June 26, 1972 Report No. DATE City of Richmond Made for: Landfill Areas - East Richmond Rd. Site Project: Hole No.: **B-5** Total Depth: 84.2 Elevation—Top of Hole45.4 Hole Location: 5/24/72 Type of Boring: H. S. Auger 5/23/72 Completed Driller: Duty CLASSIFICATION OF MATERIALS Sample % Core Blows Recovery Sheet 3 MARKS Elevation Casing Blows 88.00 (Description) Gray and Green Clayey Sand 84.2 100/.2 84.2 Boring Terminated @ 84.24

ORIGINAL (Red) FROEHLING & ROBERTSON, INC.

			~			
Report No.	X-1932			DAT	E	June 26, 1972
Made for:		f Richmond				
roject:		11 Area - East Richmond				
tole No.:	B-6		on—Top of Hole	Hole Lo		
ype of Boring:	н. 5.	Auger Sterted 5	30/72 Completed	5/31/72	Dri	Her: Duty
o.C	oth Casin Blown	CLASSIFICATION O		Sample Blows	Core	REMARKS
2.5	; =	Topsoil		9 1.	.0	Water Data:
		Brown Sandy Clay and	i Gravel	73 5.		Encountered Water @ 28.5'
6.0	,					Water Level 0 29.75' with 49' of Casing Below Ground Surface
		Gray and Brown Silty	/ Clay	5 10	0.0	Water Level 9 25.40 with 48.5' Plastic
13.						Pipe Below Ground Surface Upon Remova of Augers
	7			1/	4.0	
		Gray Sandy Silt		-	5.0	·
				19	0.0	
	1			8 20	0.0	
					.0	
				+/ 25	5.0	
28.	.5				0.0	
		Gray Sandy Silt and	Gravel	21 30	0.0	
32.	.5_			_		
34.	.5	Green Silty Clay		-	5.0	
		Green Clayey Sand as	nd Gravel			
				45 40	0.0	

^{*}No. of Blows 250-lb. Hammer, 30-in. Fell, Required to Drive Casing One Foot.

**No. of Blows 140-lb, Hammer, 30-in, Fall, Required to Drive 2-in, O.D., 1.375 in I.D. Sample One Foot.

X-1982-6 June 26, 1972 DATE Report No. City of Richmond Made for: Landfill Area - East Richmond Rd. Site Project: Total Depth 50.01 8-6 Hole No.: Elevation—Top of Hole: Hole Location: Type of Boring: H. S. Auger 5/30/72 Started Completed 5/31/72 Duty CLASSIFICATION OF MATERIALS Sample % Core Blows Recovery Sheet ZEMARKS Casing Blows Elevation Depth (Description) 44.0 55 45.0 49.0 50.0 -72 50.0 Boring Terminated @ 50.0'

^{*}No. of Blows 250-lb. Hammer, 30-in. Fall, Required to Drive Casing One Foot.

X-1982-6 DATE June 26, 1972 Report No. Made for: City of Richmond Landfill Areas - East Richmond Rd. Site Project: Total Depth:50.01 Elevation-Top of Hole: Hole No.: Hale Location: Type of Boring: H. S. Auger Started 5/30/72 Completed 5/30/72 Driller: Duty Sample Recovery CLASSIFICATION OF MATERIALS E-avation 0.8"h Sheet 1 of 2 (Description) 7 1.0 FIII From Dump Water Data: 4.0 Encountered Water 9 5 5.0 23.01 Water Level @ 49.0' with 49' of Casing Below Ground Surface 9.0 e 30 Min. 5 10.0 Vater Level P 40.6' with 44' of Plastic Pipe Below Ground Surface Upon Removal 14.0 of Augers 15.0 19.0 20.0 24.0 Gray and Brown Silty Clay 10 25.0 29.0 30.0 31.5 Brown and Gray Clayey Sand 34.0 and Silt 35.0 36.0 Dark Gray Sandy Silt 39.0 40.0

^{*}No. of Blows 250-lb. Hammer, 30-in. Fall, Required to Drive Casing One Foot.

BORING LOG

FROEHLING & ROBERTSON, INC. INSPECTION ENGINEERS . CHEMISTS . BACTERIOLOGISTS

Report No.	X-1982					DATE	June 26,	1972
Made for: Project:		f Richmond	st Richmond Rd	Site		<u>, </u>		•
ole No.:	8-7	Total Depth:50.0			Hal	e Location:		
	- H. S.		Started 5/30/		5/30/		iller: Duty	
		21.44	IFICATION OF MA		••		·	
evation	Depth Casir Blows	10 ((Description)		Sample Blows	% Core Recovery	Sheet 2Eh	
i	46.0	Dark Gray	y Sandy Silt wi		7	44.0 45.0 49.0 50.0		
		Boring Te	rminated g 50.	. 0 *				

				<i>'</i>	ONE HUN	DHED YEARS OF SERVICE			
Banort No.	J-55-	047	18	1881 DATE April 20, 1982					
unt:	City	of Richmond							
Project:		Richmond Road Landfill							
Boring No.:	B-1	Total Depth: 59.0 Elevation:		Location:					
Type of Bori	ng: H.	S. Auger Started: 4/13/82	Completed:	4/13/8 Sample	1	iller: Fishburne			
Elevation	O.O	DESCRIPTION OF MATERIALS (Classification)	Sample Blows		% Core Recovery	Sheet 1 of 2			
	1.0	Black Silty SAND w/Some Roots				GROUNDWATER DATA			
	111111	Medium-dense Reddish Tan Silty Medium SAND w/Some Medium Gravel	. 6	4.0		Water Level Stood @ 16.0' @ 0.5 hrs. w/26.0' of auger			
	8.0		5	5.5		Water Level Stood @ 58.0' @ 0 hrs. and @ 57.0' @ 0.25 hrs.			
	11.5	Medium-dense Tan Silty Medium	7 -5 -8	9.0		w/59.0' of auger Hole Caved in @ 42.0' and Water Level Stood			
	13.0			14.0		@ 38.0' at 0 hrs. with no auger			
	11111	Very Stiff Tan & Gray Silty CLAY w/a Trace of Fine Sand		15.5 16.5					
	19.0	•	UD-1	19.0					
	23.0	Tan & Gray Silty CLAY w/a Little Fine Sand	UD-2	21.0		Note: "UD" denotes 3"O.D. Undisturbed Shelby Tube Sample			
		Gray Silty CLAY	*	24.0 25.5 26.0					
	ili ili ili		UD-3 UD-4	120.0		*No Standard Penetration			
						Tests Performed, Sample was obtained by dropping spoon			
	37.0								
		Gray Silty Fine SAND	*	39.0 40.0					

Report No. J-55	-047	DATE April 20, 1982
	of Richmond	
Project: East	Richmond Road Landfill	
Boring No.: B-1	con't Total Depth: 59.0 Elevation:	Location:
Type of Boring:	H. S. Auger Started: 4/13/82 Comp	ppleted: 4/13/82 Driller: Fishburne
Elevation 48ept	DESCRIPTION OF MATERIALS (Classification)	Sample Depth Recovery Sheet 2 of 2
48.0	Gray Silty SAND and GRAVEL w/a Little Clay	** 50.0 *No Standard Penetration Test Performed, Sample was obtained by dropped spoon
	Boring Terminated @ 59.0'	

₹ ort No. J-55-047 DATE April 20, 1982 City of Richmond Client: Project. East Richmond Road Landfill B-270.5 Total Depth: Boring No. Elevation: Location: H. S. Auger Type of Boring Started: 4/8/82 Completed: 4/8/82 Fishburne Sample DESCRIPTION OF MATERIALS % Core Sample Elevation Depth (Classification) Recovery Blows (Feet) Sheet 1 GROUNDWATER DATA Black Clayey SAND Water Level Stood @ 37.9' @ 0 hrs. with (FILL) 44.0' of Auger Water Level Stood @ 63.5' @ 0 hrs. with 69.0' of Auger Water Level Stood @ 58.0' @ 0 hrs. with No Auger 17.0 Very Stiff Tan Silty CLAY. w/Some Pieces of Glass & Plastic (Possible Fill) 24.0 25.5 27.0-Stiff Tan & Reddish Brown 29.0 Silty CLAY 30.5 "UD" denoted 3"0.D UD-1 Undisturbed Shelby 32.5 Tube Sample UD-2 34.5 39.0-Firm Gray Silty CLAY

J-55-047 DATE April 20, 1982 ort No. City of Richmond C...ent: East Richmond Road Landfill Project: Boring No.: B-2 con t Total Depth: 70.5 Elevation: Location: 4/8/82 4/8/82 Driller: Fishburne Started: Completed: Type of Boring: н. S. Auger Sample DESCRIPTION OF MATERIALS % Core Depth Sheet 2 of 2 0.0 Sample Elevation Recovery (Classification) Blows (Feet) GROUNDWATER DATA Firm Gray Silty CLAY 44.0 *Wet Sample -45.5 **UD-3** Note: "UD" denotes 3"O.D. 47.5 Undisturbed Shelby UD-4 Tube Sample 49.5 57.0 Gray Silty Fine SAND 59.0 60.5 **No Standard Penetration Tests Performed, Sample was obtained by droppi spoon Gray Silty Medium to Coarse SAND & GRAVEL 69.0 70.5 70.5 Boring Terminated @ 70.5'

					'	ONE /ION	IUNED YEARS OF SERVICE"
ort No.	J-55-				1881		DATE April 20, 1982
Uent:		of Richmond					
Project:		Richmond Road Land					
Boring No.:	B-3	Total Depth: 74.0	Elevation:		Local		7.11
Type of Borin	g: H.	· · · · · · · · · · · · · · · · · · ·	rted: 4/2/82	Completed:	4/2/8 Sample	, -	riller: Fishburne
Elevation	Depth 0.0	DESCRIPTION (Classifi		Samp Blow	ole Depth	% Core Recovery	REMARKS Sheet 1 of 2
0		Stiff Gray Silt		UD- UD-	→ 7.0		GROUNDWATER DATA Water Stood @ 67.2' @ 0 hrs. w/74.0' of Auger Hole Caved in @ 64.0' and was dry w/no Auger Note: "UD" denotes 3"0.D Undisturbed Shelby Tube Sample
	23. 6		i and a Trace	4 6 UD-	7 23.3 3 27.5		
	dun	Stiff Gray to Ta w/Lenses of Fine		3,	39.0		

rt No. J-55-047 DATE April 20, 1982 City of Richmond Client: Project: East Richmond Road Landfill Boring No.: B-3 con't Total Depth: 74.0 Elevation: Location: Started: 4/2/82 Completed: 4/2/82 Oriller: Fishburne Type of Boring S. Auger Sample DESCRIPTION OF MATERIALS **∜** Core Sample Deoth Sheet 2 of 2 Elevation (Classification) Recovery Blows (Feet) 40.5 10GROUNDWATER DATA 41.0 Stiff Gray to Tan Silty CLAY VD-5 43.0 w/Lenses of Fine Sand Note: "UD" denotes **VD-6** 3"O.D. Undisturbed 45.0 Shelby Tube Sample 52.0 54.0 Very Loose Dark Greenish Gray Silty Fine SAND w/Some Shell 55.5 Fragments and a Trace of Clay *No Standard Penetration Tests Performed, Sample obtained by dropping 63.0 64.0 spoon Very Loose Gray Clayey SAND 65.5 w/Some Medium Gravel & Boulders and Shell Fragments 74. Boring Terminated @ 74.0'

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES • ENGINEERING/CHEMICAL "OVER ONE HUNDRED YEARS OF SERVICE"

Richmond, Virginia August 26, 1982

No. J-55-135

Report of: Soil Borings

Made for:

City of Richmond

Dept. of Public Works 900 East Broad Street Richmond, VA 23219

Project:

Water Monitoring Wells @ East Richmond Road Landfill

Location:

Richmond, Virginia

Date Made: August 12 - August 20, 1982

Upon authorization from Mr. S. Feitig, test wells were set at locations shown to our field crew by Mr. Feitig.

The test wells were made by means of continuous flight auger.

This report outlines the methods, procedures, and the results of the performance of a test of soil samples, and is not to be construed as a soil engineering, foundation engineering or geological engineering report.

Respectfully,

FROEHLING & ROBERTSON, INC.

P. Cassidy (dw)

John P. Cassidy, Manager Geotechnical Department

JPC/dw

CITY OF RICHMOND

GROUNDWATER MONITORING WELL INSTALLATION

EAST RICHMOND ROAD LANDFILL

WELL #	DATE	DEPTH	STRATA
8 .	8/12/82	0.0-2.0'	Tan Clayey SAND w/Gravel
	0,12,02	2.0-5.5'	Dark Gray Sandy CLAY w/Organics
			(Wood, Musty Smell)
		5.5-7.5'	Light Gray Sandy CLAY w/Trace of Gravel
		7.5-9.0'	Tan Silty SAND & GRAVEL
			(Hit Water)
	. .	9.0-40.0'	Tan Silty SAND w/Trace of Clay (wet)
		ng Terminated @ 40.0 r Stood at 9.0' @ 0	
		was set at 40.0'	mrs. w/mo auger
	""	was see at 40.0	
6	8/12/82	0.0-4.5'	Brown Sandy CLAY & GRAVEL
		4.5-8.0'	Tan Sandy GRAVEL
		8.0-14.5	Tan to Gray Clayey SAND
		14.5-17.5'	Concrete Rubble or Boulders
		17.5-40.0'	Gray Sandy CLAY
		ng Terminated @ 40.0	
		er Stood at 31.0' @ 2	24+ hours
	well	was set at 40.0'	
B - 9	8/16/82	0.0-0.5'	Brown Silty SAND w/Some Gravel
		0.5-4.0'	Tan Silty SAND w/Trace Clay
		4.0-6.5'	Brown Clayey SAND & GRAVEL
		6.5-14.0'	Gray & Tan Clayey SAND w/Little Gravel
		14.0-21.0'	Tan Clayey Medium to Coarse SAND
		01 0 07 01	w/Little Gravel
		21.0-27.0'	Tan Silty SAND w/Little Gravel
		27.0-32.0' 32.0-40.5'	Gray Silty SAND w/Trace of Gravel & Clay Gray Clayey SAND w/Little Silt
	Ros	ring Terminated @ 40	
		er Stood at 35.0' @	
	We	ll was set at 40.5'	2 mil wymo dager
7	8/19/82	0.0-9.0'	Brown to Tan Silty SAND w/Some Gravel
-	.,,.	9.0-30.0'	Brown to Black Sandy SILT w/Organics
	:	30.0-35.0'	Gray SAND w/Some Silt (Hit Water)
		35.0'	Gray Silty SAND w/Trace of Clay
		ring Terminated @ 35	
	Wat	ter Stood @ 17.0' @	
		@ 14.0' @	24 hrs.
	We:	ll was set at 35.0'	

-2-

WELL #	DATE	DEPTH	STRATA
7 (Abandoned)	Boring Hole v	0.0-1.0' 1.0-3.0' 3.0-5.5' 5.5-13.0' 13.0-16.0' 16.0-35.0' 35.0-40.0' 3 Terminated @ 40. vas abandoned Stood @ 27.0' @ 1	
10	8/20/82 Boring Water	0.0-3.0' 3.0-6.0' 6.0-12.0' 12.0-26.0' 26.0-40.0' 40.0-130.0' g Terminated @ 130 Stood @ 92.0' @ 2 was set at 130.0'	Brown Sandy SILT w/Some Gravel Black Sandy GRAVEL Gray Silty SAND (wet) Tan Silty SAND (wet) Brown Silty SAND (wet) Gray-Brown Sandy SILT (wet) to Gray Sandy Clayey SILT